vignettes/articles/Integrating-User-Defined-Functions-into-rxode2.Rmd
Integrating-User-Defined-Functions-into-rxode2.Rmd
library(rxode2)
#> rxode2 3.0.3 using 2 threads (see ?getRxThreads)
#> no cache: create with `rxCreateCache()`
When defining models you may have wished to write a small R function
or make a function integrate into rxode2
somehow. This
article discusses 4 ways to do this:
A R-based user function which can be loaded as a simple function or in certain circumstances translated to C to run more efficiently
A C function that you define and integrate into code
A user defined function that changes rxode2
ui code
by replacing the function with rxode2
code. This can be in
the presence or absence of the data for simulation or
estimation.
A R-based user function is the most convenient to include in the ODE,
but is slower than what you could have done if it was written in
C
, C++
or some other compiled language. This
was requested in
github with an appropriate example; However, I will use a very
simple example here to simply illustrate the concepts.
newAbs <- function(x) {
if (x < 0) {
-x
} else {
x
}
}
f <- rxode2({
a <- newAbs(time)
})
#> using C compiler: 'gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0'
e <- et(-10, 10, length.out=40)
Now that the ODE has been compiled the R functions will be called while solving the ODE. Since this is calling R, this forces the parallization to be turned off since R is single-threaded. It also takes more time to solve since it is shuttling back and forth between R and C. Lets see how this very simple function performs:
mb1 <- microbenchmark::microbenchmark(withoutC=suppressWarnings(rxSolve(f,e)))
library(ggplot2)
autoplot(mb1) + rxTheme()
Not terribly bad, even though it is shuffling between R and C.
You can make it a better by converting the functions to C:
# Create C functions automatically with `rxFun()`
rxFun(newAbs)
#> > finding duplicate expressions in d(newAbs)/d(x)...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
#> > optimizing duplicate expressions in d(newAbs)/d(x)...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
#> converted R function 'newAbs' to C (will now use in rxode2)
#> converted R function 'rx_newAbs_d_x' to C (will now use in rxode2)
#> Added derivative table for 'newAbs'
# Recompile to use the C functions
# Note it would recompile anyway if you didn't do this step,
# it just makes sure that it doesn't recompile every step in
# the benchmark
f <- rxode2({
a <- newAbs(time)
})
#> using C compiler: 'gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0'
mb2 <- microbenchmark::microbenchmark(withC=rxSolve(f,e, cores=1))
mb <- rbind(mb1, mb2)
autoplot(mb) + rxTheme() + xgxr::xgx_scale_y_log10()
#> Scale for y is already present.
#> Adding another scale for y, which will replace the existing scale.
print(mb)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> withoutC 7.753618 8.362809 9.228476 8.626327 9.058295 18.602100 100
#> withC 2.755867 2.903652 3.299911 3.099551 3.358154 7.858736 100
The C version is almost twice as fast as the R version. You may have
noticed the conversion also created C versions of the first derivative.
This is done automatically and gives not just C versions of function,
but C versions of the derivatives and registers them with
rxode2
. This allows the C versions to work with not only
rxode2
but nlmixr2
models.
This function was setup in advance to allow this type of conversion.
In general the derivatives will be calculated if there is not a
return()
statement in the user defined function. This means
simply let R return the last value instead of explictly calling out the
return()
. Many people prefer this method of coding.
Even if there is a return
function, the function could
be converted to C
. In the github issue, they used a
function that would not convert the derivatives:
# Light
f_R <- function(actRad, k_0, a_k) {
photfac <- a_k * actRad + k_0
if (photfac > 1) {
photfac = 1
}
return(photfac)
}
rxFun(f_R)
#> function contains return statement; derivatives not calculated
#> converted R function 'f_R' to C (will now use in rxode2)
While this is still helpful because some functions have early
returns, the nlmixr2
models requiring derivatives would be
calculated be non-optimized finite differences when this occurs. While
this gets into the internals of rxode2
and
nlmixr2
you can see this more easily when calculating the
derivatives:
rxFromSE("Derivative(f_R(actRad, k_0, a_k),k_0)")
#> [1] "(f_R(actRad,(k_0)+6.05545445239334e-06,a_k)-f_R(actRad,k_0,a_k))/6.05545445239334e-06"
Whereas the originally defined function newAbs()
would
use the new derivatives calculated as well:
rxFromSE("Derivative(newAbs(x),x)")
#> [1] "rx_newAbs_d_x(x)"
In some circumstances, the conversion to C is not possible, though you can still use the R function.
There are some requirements for R functions to be integrated into the rxode2 system:
The function must have a set number of arguments, variable
arguments like f(…)
are currently not allowed.
The function is given each argument as a single number, and the function should return a single number
If these requirements are met you can use the R function in rxode2. Additional requirements for conversion to C include:
Any functions that you use within the R function must be
understood and available to rxode2
.
fun2()
which refers to
fun1()
, fun1()
must be changed to C code and
available to rxode2
before changing the function
fun2()
to C.The functions can include if
/else
assignments or simple return statements (either by returning a value or
having that value on a line by itself). Special R control structures and
functions (like for
and lapply
) cannot be
present.
The function cannot refer to any package functions
As mentioned, if the return()
statement is present,
the derivative C functions and rxode2
’s derivative table is
not updated.
You can add your own C functions directly into rxode2 as well using
rxFun()
:
fun <- "
double fun(double a, double b, double c) {
return a*a+b*a+c;
}
" ## C-code for function
rxFun("fun", c("a", "b", "c"), fun)
If you wanted you could also use C functions or expressions for the
derivatives by using the rxD()
function:
rxD("fun", list(
function(a, b, c) { # derivative of arg1: a
paste0("2*", a, "+", b)
},
function(a, b, c) { # derivative of arg2: b
return(a)
},
function(a, b, c) { # derivative of arg3: c
return("0.0")
}
))
Removing the function with rxRmFun()
will also remove
the derivative table:
rxRmFun("fun")
rxode2
code into the current
model
This replaces rxode2
code in the current model with some
expansion. This can allow more R-like functions inside of the rxode2 ui
models, as well as adding approximating functions like polynomials,
splines and neural networks.
An example that allows more R
-like functions is
below:
f <- function() {
model({
a <- rxpois(lambda=lam)
})
}
# Which will evaluate into a standard rxode2 function that does not
# support named arguments (since it is translated to C)
f()
# Which is still true in the standard rxode2:
try(rxode2({
a <- rxpois(lambda=lam)
}))
This is accomplished by a combination of two functions, which are highly commented:
rxUdfUi.rxpois <- function(fun) {
# Fun is the language object (ie quoted R object) to be evaluated or
# changed in the code
.fun <- fun
# Since the `rxpois` function is built into the rxode2 we need to
# have a function with a different conflicts. In this case, I take
# the function name (fun[[1]]), and prepend a ".", which follows
# `rxode2`'s naming convention of un-exported functions.
#
# This next evaluation changes the expression function to .rxpois()
.fun[[1]] <- str2lang(paste0(".", deparse1(fun[[1]])))
# Since this is still a R expression, you can then evaluate the
# function .rxpois to produce the proper code:
eval(.fun)
}
# The above s3 method can be registered in a package or you can use
# the following code to register it in your session:
rxode2::.s3register("rxode2::rxUdfUi", "rxpois")
# This is the function that changes the code as needed
.rxpois <- function(lambda) {
# The first part of this code tries to change the value into a
# character. This handles cases like rxpois(lambda=lam),
# rxpois(lam), rxpois("lam"). It also tries to evaluate the
# argument supplied to lambda in case it comes from a different
# location.
.lam <- as.character(substitute(lambda))
.tmp <- try(force(lambda), silent=TRUE)
if (!inherits(.tmp, "try-error")) {
if (is.character(.tmp)) {
.lam <- lambda
}
}
# This part creates a list with the replacement text, in this case
# it woulb be rxpois(lam) where there is no equals included, as
# required by `rxode2`:
list(replace=paste0("rxpois(", .lam, ")"))
}
In general the list that the function needs to return can have:
$replace
– The text that will be replaced
$before
– lines that will be placed in the model
before the current function is found
$after
– lines that are added in the model after the
current function is found
$iniDf
– the initial estimates
data.frame
for this problem. While calling this function,
you can retrieve the initial conditions currently used parsing you can
get the prior value with rxUdfUiIniDf()
and then you can
modify it inside the function and return the new data.frame
in this list element. This allows you add/delete initial estimates from
the model as well as modify the model lines themselves.
$uiUseData
– when TRUE
, this instructs
rxode2
and nlmixr2est
to re-parse this
function in the presence of data, this means a bit more function setup
will need to be done.
$uiUseMv
– when TRUE
this instructs
rxode2
to re-parse the function after the initial model
variables are calculated.
In addition to the rxUdfUiIniDf()
you can get
information about the parser:
rxUdfUiParsing()
returns if the rxode2 ui function
is being parsed currently (this allows a function to be overloaded as a
udf
for calling from rxode2
as well as a
function for modifying the model).
rxUdfUiNum()
during parsing the function you are
calling (in the example above rxpois()
can be called
multiple times. This gives the number of the function in the model in
order (the first would give 1
the second, 2
,
etc). This can be used to create unique variables with functions like
rxIntToLetter()
or rxIntToBase()
.
rxUdfUiIniLhs()
which gives the left-handed side of
the equation where the function is found. This is also a R
language object.
rxUdfUiIniMv()
gives the model variables for parsing
(can be used in functions like linCmt()
)
rxUdfUiData()
which specifies the data that are
being used to simulate, estimate, etc.
rxUdfUiEst()
which gives the estimation/simulation
method that is being used with the model. For example, with simulation
it would be rxSolve
.
rxode2
ui models
You can also take and change the model and take into consideration
the rxode2
model variables before the full ui
has completed its parsing. These rxode2
model variables has
information that might change what variables you make or names of
variables. For example it has what is on the left hand side of the
equations ($lhs
), what are the input parameters
($params
) and what is the ODE states
($state
)).
If you are using this approach, you will likely need to do the following steps:
When data are not being processed, you need to put the function
in an rxode2
acceptable form, no named arguments, no
strings, and only numbers or variables in the output.
The number of arguments of this output needs to be declared in
the S3
method by adding the attribute "nargs"
to method. For example, the built in testMod1()
ui
modification function uses only one argument when parsed
Below is a commented example of the model variables example:
testMod1 <- function(val=1) {
# This converts the val to a character if it is somthing like testMod1(b)
.val <- as.character(substitute(val))
.tmp <- suppressWarnings(try(force(val), silent = TRUE))
if (!inherits(.tmp, "try-error")) {
if (is.character(.tmp)) {
.val <- val
}
}
# This does the UI parsing
if (rxUdfUiParsing()) {
# See if the model variables are available
.mv <- rxUdfUiMv()
if (is.null(.mv)) {
# Put this in a rxode2 low level acceptible form, no complex
# expressions, no named arguments, something that is suitable
# for C.
#
# The `uiUsMv` tells the parser this needs to be reparsed when
# the model variables become avaialble during parsing.
return(list(replace=paste0("testMod1(", .val, ")"),
uiUseMv=TRUE))
} else {
# Now that we have the model variables, we can then do something
# about this
.vars <- .mv$params
if (length(.vars) > 0) {
# If there is parameters available, this dummy function times
# the first input function by the value specified
return(list(replace=paste0(.vars[1], "*", .val)))
} else {
# If the value isn't availble, simply replace the function
# with the value.
return(list(replace=.val))
}
}
}
stop("This function is only for use in rxode2 ui models",
call.=FALSE)
}
rxUdfUi.testMod1 <- function(fun) {
eval(fun)
}
# To allow this to go to the next step, you need to declare how many
# arguments this argument has, in this case 1. Bu adding the
# attribute "nargs", rxode2 lower level parser knows how to handle
# this new function. This allows rxode2 to generate the model
# variables and send it to the next step.
attr(rxUdfUi.testMod1, "nargs") <- 1L
# If you are in a package, you can use the rxoygen tag @export to
# register this as a rxode2 model definition.
#
# If you are using this in your own script, you need to register the s3 function
# One way to do this is:
rxode2::.s3register("rxode2::rxUdfUi", "testMod1")
## These are some examples of this function in use:
f <- function() {
model({
a <- b + testMod1(3)
})
}
f <- f()
print(f)
#> -- rxode2-based Pred model -----------------------------------------------------
#> -- Model (Normalized Syntax): --
#> function() {
#> model({
#> a <- b + (b * 3)
#> })
#> }
f <- function() {
model({
a <- testMod1(c)
})
}
f <- f()
print(f)
#> -- rxode2-based Pred model -----------------------------------------------------
#> -- Model (Normalized Syntax): --
#> function() {
#> model({
#> a <- (c * c)
#> })
#> }
f <- function() {
model({
a <- testMod1(1)
})
}
f <- f()
print(f)
#> -- rxode2-based Pred model -----------------------------------------------------
#> -- Model (Normalized Syntax): --
#> function() {
#> model({
#> a <- 1
#> })
#> }
rxode2
ui modification models
The same steps are needed to use the data in the model replacement;
You can then use the data and the model to replace the values inside the
model. A worked example linMod()
is included that has the
ability to use:
# You can print the code:
linMod
#> function (variable, power, dv = "dv", intercept = TRUE, type = c("replace",
#> "before", "after"), num = NULL, iniDf = NULL, data = FALSE,
#> mv = FALSE)
#> {
#> .dv <- as.character(substitute(dv))
#> .tmp <- suppressWarnings(try(force(dv), silent = TRUE))
#> if (!inherits(.tmp, "try-error")) {
#> if (is.character(.tmp)) {
#> .dv <- dv
#> }
#> }
#> .var <- as.character(substitute(variable))
#> .tmp <- try(force(variable), silent = TRUE)
#> .doExp3 <- FALSE
#> if (!inherits(.tmp, "try-error")) {
#> if (is.character(.tmp)) {
#> .var <- variable
#> }
#> else if (!inherits(.tmp, "formula")) {
#> .dv <- as.character(substitute(dv))
#> .tmp <- suppressWarnings(try(force(dv), silent = TRUE))
#> if (!inherits(.tmp, "try-error")) {
#> if (is.character(.tmp)) {
#> .dv <- dv
#> }
#> }
#> }
#> else if (length(variable) == 2) {
#> if (!identical(variable[[1]], quote(`~`))) {
#> stop("unexpected formula, needs to be the form ~x^3",
#> call. = FALSE)
#> }
#> .doExp3 <- TRUE
#> .exp3 <- variable[[2]]
#> }
#> else {
#> if (length(variable) != 3) {
#> stop("unexpected formula, needs to be the form dv~x^3",
#> call. = FALSE)
#> }
#> if (!identical(variable[[1]], quote(`~`))) {
#> stop("unexpected formula, needs to be the form dv~x^3",
#> call. = FALSE)
#> }
#> .dv <- as.character(variable[[2]])
#> data <- TRUE
#> .exp3 <- variable[[3]]
#> .doExp3 <- TRUE
#> }
#> if (.doExp3) {
#> if (length(.exp3) == 1) {
#> .var <- variable <- as.character(.exp3)
#> power <- 1
#> }
#> else if (length(.exp3) == 3) {
#> if (!identical(.exp3[[1]], quote(`^`))) {
#> stop("unexpected formula, needs to be the form dv~x^3",
#> call. = FALSE)
#> }
#> if (!is.numeric(.exp3[[3]])) {
#> stop("unexpected formula, needs to be the form dv~x^3",
#> call. = FALSE)
#> }
#> .var <- variable <- as.character(.exp3[[2]])
#> power <- .exp3[[3]]
#> }
#> else {
#> stop("unexpected formula, needs to be the form dv~x^3",
#> call. = FALSE)
#> }
#> }
#> }
#> checkmate::assertCharacter(.var, len = 1L, any.missing = FALSE,
#> pattern = "^[.]*[a-zA-Z]+[a-zA-Z0-9._]*$", min.chars = 1L,
#> .var.name = "variable")
#> checkmate::assertCharacter(.dv, len = 1L, any.missing = FALSE,
#> pattern = "^[.]*[a-zA-Z]+[a-zA-Z0-9._]*$", min.chars = 1L,
#> .var.name = "dv")
#> checkmate::assertLogical(intercept, len = 1L, any.missing = FALSE)
#> checkmate::assertIntegerish(power, lower = ifelse(intercept,
#> 0L, 1L), len = 1L)
#> if (is.null(num)) {
#> num <- rxUdfUiNum()
#> }
#> checkmate::assertIntegerish(num, lower = 1, any.missing = FALSE,
#> len = 1)
#> if (mv && is.null(rxUdfUiMv())) {
#> if (intercept) {
#> return(list(replace = paste0("linModM(", .var, ", ",
#> power, ")"), uiUseMv = TRUE))
#> }
#> else {
#> return(list(replace = paste0("linModM0(", .var, ", ",
#> power, ")"), uiUseMv = TRUE))
#> }
#> }
#> if (data && is.null(rxUdfUiData())) {
#> if (intercept) {
#> return(list(replace = paste0("linModD(", .var, ", ",
#> power, ", ", .dv, ")"), uiUseData = TRUE))
#> }
#> else {
#> return(list(replace = paste0("linModD0(", .var, ", ",
#> power, ",", .dv, ")"), uiUseData = TRUE))
#> }
#> }
#> if (is.null(iniDf)) {
#> iniDf <- rxUdfUiIniDf()
#> }
#> assertIniDf(iniDf, null.ok = TRUE)
#> type <- match.arg(type)
#> .mv <- rxUdfUiMv()
#> if (!is.null(.mv)) {
#> .varsMv <- c(.mv$lhs, .mv$params, .mv$state)
#> .pre <- paste0(.var, num, rxIntToLetter(seq_len(power +
#> ifelse(intercept, 1L, 0L)) - 1L))
#> .pre <- vapply(.pre, function(v) {
#> if (v %in% .varsMv) {
#> paste0("rx.linMod.", v)
#> }
#> else {
#> v
#> }
#> }, character(1), USE.NAMES = FALSE)
#> }
#> else {
#> .pre <- paste0("rx.linMod.", .var, num, rxIntToLetter(seq_len(power +
#> ifelse(intercept, 1L, 0L)) - 1L))
#> }
#> if (!is.null(iniDf)) {
#> .theta <- iniDf[!is.na(iniDf$ntheta), , drop = FALSE]
#> if (length(.theta$ntheta) > 0L) {
#> .maxTheta <- max(.theta$ntheta)
#> .theta1 <- .theta[1, ]
#> }
#> else {
#> .maxTheta <- 0L
#> .theta1 <- .rxBlankIni("theta")
#> }
#> .theta1$lower <- -Inf
#> .theta1$upper <- Inf
#> .theta1$fix <- FALSE
#> .theta1$label <- NA_character_
#> .theta1$backTransform <- NA_character_
#> .theta1$condition <- NA_character_
#> .theta1$err <- NA_character_
#> .est <- rep(0, length(.pre))
#> if (data) {
#> .dat <- rxUdfUiData()
#> .wdv <- which(tolower(names(.dat)) == tolower(.dv))
#> if (length(.wdv) == 0L) {
#> warning(.dv, "not found in data, so no initial estimates will be set to zero")
#> }
#> else {
#> names(.dat)[.wdv] <- .dv
#> .model <- stats::lm(stats::as.formula(paste0(.dv,
#> " ~ stats::poly(", .var, ",", power, ")", ifelse(intercept,
#> "", "+0"))), data = rxUdfUiData())
#> .est <- coef(.model)
#> }
#> }
#> .cur <- c(list(.theta), lapply(seq_along(.pre), function(i) {
#> .cur <- .theta1
#> .cur$name <- .pre[i]
#> .cur$est <- .est[i]
#> .cur$ntheta <- .maxTheta + i
#> .cur
#> }))
#> .theta <- do.call(rbind, .cur)
#> .eta <- iniDf[is.na(iniDf$neta), , drop = FALSE]
#> .iniDf <- rbind(.theta, .eta)
#> }
#> else {
#> .iniDf <- NULL
#> }
#> .linMod <- paste(vapply(seq_along(.pre), function(i) {
#> if (intercept) {
#> if (i == 1)
#> return(.pre[i])
#> if (i == 2)
#> return(paste0(.pre[i], "*", .var))
#> paste0(.pre[i], "*", paste0(.var, "^", i - 1L))
#> }
#> else {
#> if (i == 1)
#> return(paste0(.pre[i], "*", .var))
#> paste0(.pre[i], "*", paste0(.var, "^", i))
#> }
#> }, character(1)), collapse = "+")
#> if (type == "replace") {
#> list(replace = .linMod, iniDf = .iniDf)
#> }
#> else if (type == "before") {
#> .replace <- paste0("rx.linMod.", .var, ".f", num)
#> list(before = paste0(.replace, " <- ", .linMod), replace = .replace,
#> iniDf = .iniDf)
#> }
#> else if (type == "after") {
#> .replace <- paste0("rx.linMod.", .var, ".f", num)
#> list(after = paste0(.replace, " <- ", .linMod), replace = "0",
#> iniDf = .iniDf)
#> }
#> }
#> <bytecode: 0x5555b7320e28>
#> <environment: namespace:rxode2>
# You can also print the s3 method that is used for this method
rxode2:::rxUdfUi.linMod
#> function (fun)
#> {
#> eval(fun)
#> }
#> <bytecode: 0x5555b7d59480>
#> <environment: namespace:rxode2>
#> attr(,"nargs")
#> [1] 2