gcd.Rdgcd(a,b) computes the greatest common divisor of two positive
integer numbers by Euclid's algorithm.
lcm(...) computes the least common multiple of an arbitrary number
of integers, iteratively applying lcm(a,b) = (a * b) / gcd(a,b).
GCD(a, b)
LCM(n, ...)a positive integer.
Very simple, but too useful to spend time on, if you need it.
GCD(12, 18)
#> [1] 6
GCD(15, 105)
#> [1] 15
GCD(84, 64)
#> [1] 4
LCM(1,2,3,4,5,6) # 60
#> [1] 60
LCM(2,3,5,7) == print(2*3*5*7) # true, of course
#> [1] 210
#> [1] TRUE
LCM(1:8) # 840
#> [1] 840
## the LCMs needed to get integer coefficients / N in Taylor polynomial for log(1+x):
vapply(1:24, function(n) LCM(1:n), 1)
#> [1] 1 2 6 12 60 60
#> [7] 420 840 2520 2520 27720 27720
#> [13] 360360 360360 360360 720720 12252240 12252240
#> [19] 232792560 232792560 232792560 232792560 5354228880 5354228880