Greatest Common Divisor and Least Common Multiple
gcd.Rdgcd(a,b) computes the greatest common divisor of two positive
integer numbers by Euclid's algorithm.
lcm(...) computes the least common multiple of an arbitrary number
of integers, iteratively applying lcm(a,b) = (a * b) / gcd(a,b).
Examples
GCD(12, 18)
#> [1] 6
GCD(15, 105)
#> [1] 15
GCD(84, 64)
#> [1] 4
LCM(1,2,3,4,5,6) # 60
#> [1] 60
LCM(2,3,5,7) == print(2*3*5*7) # true, of course
#> [1] 210
#> [1] TRUE
LCM(1:8) # 840
#> [1] 840
## the LCMs needed to get integer coefficients / N in Taylor polynomial for log(1+x):
vapply(1:24, function(n) LCM(1:n), 1)
#> [1] 1 2 6 12 60 60
#> [7] 420 840 2520 2520 27720 27720
#> [13] 360360 360360 360360 720720 12252240 12252240
#> [19] 232792560 232792560 232792560 232792560 5354228880 5354228880