Skip to contents

Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a provided "weight" vector. In other words, it scales each column of the dataset by a scalar multiplier.

Usage

ft_elementwise_product(
  x,
  input_col = NULL,
  output_col = NULL,
  scaling_vec = NULL,
  uid = random_string("elementwise_product_"),
  ...
)

Arguments

x

A spark_connection, ml_pipeline, or a tbl_spark.

input_col

The name of the input column.

output_col

The name of the output column.

scaling_vec

the vector to multiply with input vectors

uid

A character string used to uniquely identify the feature transformer.

...

Optional arguments; currently unused.

Value

The object returned depends on the class of x. If it is a spark_connection, the function returns a ml_estimator or a ml_estimator object. If it is a ml_pipeline, it will return a pipeline with the transformer or estimator appended to it. If a tbl_spark, it will return a tbl_spark with the transformation applied to it.