Word2Vec transforms a word into a code for further natural language processing or machine learning process.
Usage
ft_word2vec(
x,
input_col = NULL,
output_col = NULL,
vector_size = 100,
min_count = 5,
max_sentence_length = 1000,
num_partitions = 1,
step_size = 0.025,
max_iter = 1,
seed = NULL,
uid = random_string("word2vec_"),
...
)
ml_find_synonyms(model, word, num)Arguments
- x
A
spark_connection,ml_pipeline, or atbl_spark.- input_col
The name of the input column.
- output_col
The name of the output column.
- vector_size
The dimension of the code that you want to transform from words. Default: 100
- min_count
The minimum number of times a token must appear to be included in the word2vec model's vocabulary. Default: 5
- max_sentence_length
(Spark 2.0.0+) Sets the maximum length (in words) of each sentence in the input data. Any sentence longer than this threshold will be divided into chunks of up to
max_sentence_lengthsize. Default: 1000- num_partitions
Number of partitions for sentences of words. Default: 1
- step_size
Param for Step size to be used for each iteration of optimization (> 0).
- max_iter
The maximum number of iterations to use.
- seed
A random seed. Set this value if you need your results to be reproducible across repeated calls.
- uid
A character string used to uniquely identify the feature transformer.
- ...
Optional arguments; currently unused.
- model
A fitted
Word2Vecmodel, returned byft_word2vec().- word
A word, as a length-one character vector.
- num
Number of words closest in similarity to the given word to find.
Value
The object returned depends on the class of x. If it is a
spark_connection, the function returns a ml_estimator or a
ml_estimator object. If it is a ml_pipeline, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark, it will return a tbl_spark with the transformation
applied to it.
ml_find_synonyms() returns a DataFrame of synonyms and cosine similarities
Details
In the case where x is a tbl_spark, the estimator
fits against x to obtain a transformer, returning a tbl_spark.
See also
Other feature transformers:
ft_binarizer(),
ft_bucketizer(),
ft_chisq_selector(),
ft_count_vectorizer(),
ft_dct(),
ft_elementwise_product(),
ft_feature_hasher(),
ft_hashing_tf(),
ft_idf(),
ft_imputer(),
ft_index_to_string(),
ft_interaction(),
ft_lsh,
ft_max_abs_scaler(),
ft_min_max_scaler(),
ft_ngram(),
ft_normalizer(),
ft_one_hot_encoder(),
ft_one_hot_encoder_estimator(),
ft_pca(),
ft_polynomial_expansion(),
ft_quantile_discretizer(),
ft_r_formula(),
ft_regex_tokenizer(),
ft_robust_scaler(),
ft_sql_transformer(),
ft_standard_scaler(),
ft_stop_words_remover(),
ft_string_indexer(),
ft_tokenizer(),
ft_vector_assembler(),
ft_vector_indexer(),
ft_vector_slicer()