Compute performance metrics.
Usage
ml_evaluate(x, dataset)
# S3 method for class 'ml_model_logistic_regression'
ml_evaluate(x, dataset)
# S3 method for class 'ml_logistic_regression_model'
ml_evaluate(x, dataset)
# S3 method for class 'ml_model_linear_regression'
ml_evaluate(x, dataset)
# S3 method for class 'ml_linear_regression_model'
ml_evaluate(x, dataset)
# S3 method for class 'ml_model_generalized_linear_regression'
ml_evaluate(x, dataset)
# S3 method for class 'ml_generalized_linear_regression_model'
ml_evaluate(x, dataset)
# S3 method for class 'ml_model_clustering'
ml_evaluate(x, dataset)
# S3 method for class 'ml_model_classification'
ml_evaluate(x, dataset)
# S3 method for class 'ml_evaluator'
ml_evaluate(x, dataset)Examples
if (FALSE) { # \dontrun{
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
ml_gaussian_mixture(iris_tbl, Species ~ .) %>%
ml_evaluate(iris_tbl)
ml_kmeans(iris_tbl, Species ~ .) %>%
ml_evaluate(iris_tbl)
ml_bisecting_kmeans(iris_tbl, Species ~ .) %>%
ml_evaluate(iris_tbl)
} # }