PrefixSpan algorithm for mining frequent itemsets.
Usage
ml_prefixspan(
x,
seq_col = "sequence",
min_support = 0.1,
max_pattern_length = 10,
max_local_proj_db_size = 3.2e+07,
uid = random_string("prefixspan_"),
...
)
ml_freq_seq_patterns(model)Arguments
- x
A
spark_connection,ml_pipeline, or atbl_spark.- seq_col
The name of the sequence column in dataset (defaults to "sequence"). Rows with nulls in this column are ignored.
- min_support
The minimum support required to be considered a frequent sequential pattern.
- max_pattern_length
The maximum length of a frequent sequential pattern. Any frequent pattern exceeding this length will not be included in the results.
- max_local_proj_db_size
The maximum number of items allowed in a prefix-projected database before local iterative processing of the projected database begins. This parameter should be tuned with respect to the size of your executors.
- uid
A character string used to uniquely identify the ML estimator.
- ...
Optional arguments; currently unused.
- model
A Prefix Span model.
Examples
if (FALSE) { # \dontrun{
library(sparklyr)
sc <- spark_connect(master = "local", version = "2.4.0")
items_df <- dplyr::tibble(
seq = list(
list(list(1, 2), list(3)),
list(list(1), list(3, 2), list(1, 2)),
list(list(1, 2), list(5)),
list(list(6))
)
)
items_sdf <- copy_to(sc, items_df, overwrite = TRUE)
prefix_span_model <- ml_prefixspan(
sc,
seq_col = "seq",
min_support = 0.5,
max_pattern_length = 5,
max_local_proj_db_size = 32000000
)
frequent_items <- prefix_span_model$frequent_sequential_patterns(items_sdf) %>% collect()
} # }