vignettes/using-outliers-module.Rmd
using-outliers-module.Rmdteal application to analyze and report outliers with various datasets types.
This vignette will guide you through the four parts to create a teal application using various types of datasets using the outliers module tm_outliers():
app variable
library(teal.modules.general) # used to create the app
library(dplyr) # used to modify data setsInside this app 3 datasets will be used
ADSL A wide data set with subject dataADRS A long data set with response data for subjects at different time points of the studyADLB A long data set with lab measurements for each subjectapp variable
This is the most important section. We will use the teal::init() function to create an app. The data will be handed over using teal.data::teal_data(). The app itself will be constructed by multiple calls of tm_outliers() using different combinations of data sets.
# configuration for the single wide dataset
mod1 <- tm_outliers(
label = "Single wide dataset",
outlier_var = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")),
selected = "AGE",
fixed = FALSE
)
),
categorical_var = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variables:",
choices = variable_choices(
data[["ADSL"]],
subset = names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor)))
),
selected = "RACE",
multiple = FALSE,
fixed = FALSE
)
)
)
# configuration for the wide and long datasets
mod2 <- tm_outliers(
label = "Wide and long datasets",
outlier_var = list(
data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")),
selected = "AGE",
fixed = FALSE
)
),
data_extract_spec(
dataname = "ADLB",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADLB"]], c("AVAL", "CHG2")),
selected = "AVAL",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var =
data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variables:",
choices = variable_choices(
data[["ADSL"]],
subset = names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor)))
),
selected = "RACE",
multiple = FALSE,
fixed = FALSE
)
)
)
# configuration for the multiple long datasets
mod3 <- tm_outliers(
label = "Multiple long datasets",
outlier_var = list(
data_extract_spec(
dataname = "ADRS",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADRS"]], c("ADY", "EOSDY")),
selected = "ADY",
fixed = FALSE
)
),
data_extract_spec(
dataname = "ADLB",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADLB"]], c("AVAL", "CHG2")),
selected = "AVAL",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "ADRS",
select = select_spec(
label = "Select variables:",
choices = variable_choices(data[["ADRS"]], c("ARM", "ACTARM")),
selected = "ARM",
multiple = FALSE,
fixed = FALSE
)
),
data_extract_spec(
dataname = "ADLB",
select = select_spec(
label = "Select variables:",
choices = variable_choices(
data[["ADLB"]],
subset = names(Filter(isTRUE, sapply(data[["ADLB"]], is.factor)))
),
selected = "RACE",
multiple = FALSE,
fixed = FALSE
)
)
)
)
# initialize the app
app <- init(
data = data,
modules = modules(
# tm_outliers ----
modules(
label = "Outliers module",
mod1,
mod2,
mod3
)
)
)A simple shiny::shinyApp() call will let you run the app. Note that app is only displayed when running this code inside an R session.