dtCMatrix-class.RdThe "dtCMatrix" class is a class of triangular, sparse
matrices in the compressed, column-oriented format. In this
implementation the non-zero elements in the columns are sorted into
increasing row order.
The "dtTMatrix" class is a class of triangular, sparse matrices
in triplet format.
Objects can be created by calls of the form new("dtCMatrix",
...) or calls of the form new("dtTMatrix", ...),
but more typically automatically via Matrix()
or coercions such as as(x, "triangularMatrix").
uplo:Object of class "character". Must be
either "U", for upper triangular, and "L", for lower triangular.
diag:Object of class "character". Must be
either "U", for unit triangular (diagonal is all ones), or
"N"; see triangularMatrix.
p:(only present in "dtCMatrix":) an
integer vector for providing pointers, one for each
column, see the detailed description in CsparseMatrix.
i:Object of class "integer" of length nnzero
(number of non-zero elements). These are the row numbers for
each non-zero element in the matrix.
j:Object of class "integer" of length nnzero
(number of non-zero elements). These are the column numbers for
each non-zero element in the matrix. (Only present in the
dtTMatrix class.)
x:Object of class "numeric" - the non-zero
elements of the matrix.
Dim,Dimnames:The dimension (a length-2
"integer") and corresponding names (or NULL),
inherited from the Matrix, see there.
Class "dgCMatrix", directly.
Class "triangularMatrix", directly.
Class "dMatrix", "sparseMatrix", and more by class
"dgCMatrix" etc, see the examples.
signature(a = "dtCMatrix", b = "...."):
sparse triangular solve (aka “backsolve” or
“forwardsolve”), see solve-methods.
signature(x = "dtCMatrix"): returns the transpose of
x
signature(x = "dtTMatrix"): returns the transpose of
x
showClass("dtCMatrix")
#> Class "dtCMatrix" [package "Matrix"]
#>
#> Slots:
#>
#> Name: i p Dim Dimnames x uplo diag
#> Class: integer integer integer list numeric character character
#>
#> Extends:
#> Class "CsparseMatrix", directly
#> Class "dsparseMatrix", directly
#> Class "triangularMatrix", directly
#> Class "dMatrix", by class "dsparseMatrix", distance 2
#> Class "sparseMatrix", by class "dsparseMatrix", distance 2
#> Class "Matrix", by class "triangularMatrix", distance 2
showClass("dtTMatrix")
#> Class "dtTMatrix" [package "Matrix"]
#>
#> Slots:
#>
#> Name: i j Dim Dimnames x uplo diag
#> Class: integer integer integer list numeric character character
#>
#> Extends:
#> Class "TsparseMatrix", directly
#> Class "dsparseMatrix", directly
#> Class "triangularMatrix", directly
#> Class "dMatrix", by class "dsparseMatrix", distance 2
#> Class "sparseMatrix", by class "dsparseMatrix", distance 2
#> Class "Matrix", by class "triangularMatrix", distance 2
t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2, Dim= as.integer(c(4,4)))
t1
#> 4 x 4 sparse Matrix of class "dtTMatrix"
#>
#> [1,] . . . 3
#> [2,] . . 7 .
#> [3,] . . . .
#> [4,] . . . .
## from 0-diagonal to unit-diagonal {low-level step}:
tu <- t1 ; tu@diag <- "U"
tu
#> 4 x 4 sparse Matrix of class "dtTMatrix" (unitriangular)
#>
#> [1,] I . . 3
#> [2,] . I 7 .
#> [3,] . . I .
#> [4,] . . . I
(cu <- as(tu, "CsparseMatrix"))
#> 4 x 4 sparse Matrix of class "dtCMatrix" (unitriangular)
#>
#> [1,] I . . 3
#> [2,] . I 7 .
#> [3,] . . I .
#> [4,] . . . I
str(cu)# only two entries in @i and @x
#> Formal class 'dtCMatrix' [package "Matrix"] with 7 slots
#> ..@ i : int [1:2] 1 0
#> ..@ p : int [1:5] 0 0 0 1 2
#> ..@ Dim : int [1:2] 4 4
#> ..@ Dimnames:List of 2
#> .. ..$ : NULL
#> .. ..$ : NULL
#> ..@ x : num [1:2] 7 3
#> ..@ uplo : chr "U"
#> ..@ diag : chr "U"
stopifnot(cu@i == 1:0,
all(2 * symmpart(cu) == Diagonal(4) + forceSymmetric(cu)))
t1[1,2:3] <- -1:-2
diag(t1) <- 10*c(1:2,3:2)
t1 # still triangular
#> 4 x 4 sparse Matrix of class "dtTMatrix"
#>
#> [1,] 10 -1 -2 3
#> [2,] . 20 7 .
#> [3,] . . 30 .
#> [4,] . . . 20
(it1 <- solve(t1))
#> 4 x 4 sparse Matrix of class "dtCMatrix"
#>
#> [1,] 0.1 0.005 0.00550000 -0.015
#> [2,] . 0.050 -0.01166667 .
#> [3,] . . 0.03333333 .
#> [4,] . . . 0.050
t1. <- solve(it1)
all(abs(t1 - t1.) < 10 * .Machine$double.eps)
#> [1] TRUE
## 2nd example
U5 <- new("dtCMatrix", i= c(1L, 0:3), p=c(0L,0L,0:2, 5L), Dim = c(5L, 5L),
x = rep(1, 5), diag = "U")
U5
#> 5 x 5 sparse Matrix of class "dtCMatrix" (unitriangular)
#>
#> [1,] I . . 1 .
#> [2,] . I 1 . 1
#> [3,] . . I . 1
#> [4,] . . . I 1
#> [5,] . . . . I
(iu <- solve(U5)) # contains one '0'
#> 5 x 5 sparse Matrix of class "dtCMatrix"
#>
#> [1,] 1 . . -1 1
#> [2,] . 1 -1 . .
#> [3,] . . 1 . -1
#> [4,] . . . 1 -1
#> [5,] . . . . 1
validObject(iu2 <- solve(U5, Diagonal(5)))# failed in earlier versions
#> [1] TRUE
I5 <- iu %*% U5 # should equal the identity matrix
i5 <- iu2 %*% U5
m53 <- matrix(1:15, 5,3, dimnames=list(NULL,letters[1:3]))
asDiag <- function(M) as(drop0(M), "diagonalMatrix")
stopifnot(
all.equal(Diagonal(5), asDiag(I5), tolerance=1e-14) ,
all.equal(Diagonal(5), asDiag(i5), tolerance=1e-14) ,
identical(list(NULL, dimnames(m53)[[2]]), dimnames(solve(U5, m53)))
)