Convert glmnet::cv.glmnet to data.frame

# S3 method for class 'cv.glmnet'
fortify(model, data = NULL, ...)

Arguments

model

glmnet::cv.glmnet instance

data

original dataset, if needed

...

other arguments passed to methods

Value

data.frame

Examples

if (requireNamespace("survival", quietly = TRUE)) {
  fortify(glmnet::cv.glmnet(data.matrix(Orange[-3]), data.matrix(Orange[3])))
}
#>          lambda       cvm      cvup      cvlo nz
#> s0   3.94663432 3293.0859 3962.8333 2623.3386  0
#> s1   3.85360057 2982.9485 3661.4468 2304.4502  1
#> s2   3.76056683 2598.8231 3210.3739 1987.2723  1
#> s3   3.66753309 2262.3848 2803.0016 1721.7681  1
#> s4   3.57449935 1982.8804 2462.9182 1502.8427  1
#> s5   3.48146561 1750.6601 2178.7878 1322.5325  1
#> s6   3.38843187 1557.7111 1941.2068 1174.2155  1
#> s7   3.29539813 1397.3797 1742.3742 1052.3852  1
#> s8   3.20236439 1264.1405 1575.8186  952.4623  1
#> s9   3.10933064 1153.4052 1436.1706  870.6398  1
#> s10  3.01629690 1063.1462 1320.7658  805.5265  1
#> s11  2.92326316  989.0301 1225.0084  753.0518  1
#> s12  2.83022942  914.8232 1134.0252  695.6212  2
#> s13  2.73719568  826.2000 1030.4926  621.9073  2
#> s14  2.64416194  734.9843  917.1229  552.8457  2
#> s15  2.55112820  655.4973  816.1289  494.8658  2
#> s16  2.45809446  589.3228  731.6837  446.9619  2
#> s17  2.36506072  534.4494  661.4583  407.4405  2
#> s18  2.27202697  488.9524  603.0512  374.8535  2
#> s19  2.17899323  451.2344  554.4695  347.9993  2
#> s20  2.08595949  419.9700  514.0587  325.8812  2
#> s21  1.99292575  394.0589  480.4450  307.6729  2
#> s22  1.89989201  372.5884  452.4869  292.6899  2
#> s23  1.80685827  354.8007  429.2357  280.3657  2
#> s24  1.71382453  340.0673  409.9026  270.2320  2
#> s25  1.62079079  327.8666  393.8310  261.9021  2
#> s26  1.52775705  317.7657  380.4744  255.0570  2
#> s27  1.43472330  309.4057  369.3776  249.4338  2
#> s28  1.34168956  302.4886  360.1613  244.8160  2
#> s29  1.24865582  296.7675  352.5095  241.0255  2
#> s30  1.15562208  292.0373  346.1589  237.9157  2
#> s31  1.06258834  288.1280  340.8899  235.3661  2
#> s32  0.96955460  284.8988  336.5200  233.2776  2
#> s33  0.87652086  282.2326  332.8969  231.5683  2
#> s34  0.78348712  280.0326  329.8939  230.1713  2
#> s35  0.69045338  278.2183  327.4058  229.0309  2
#> s36  0.59741963  276.7234  325.3449  228.1018  2
#> s37  0.50438589  275.4925  323.6386  227.3463  2
#> s38  0.41135215  274.4798  322.2262  226.7335  2
#> s39  0.31831841  273.6477  321.0576  226.2377  2
#> s40  0.22528467  272.9645  320.0910  225.8379  2
#> s41  0.13225093  272.4043  319.2918  225.5168  2
#> s42  0.03921719  271.9456  318.6313  225.2600  2
#> s43 -0.05381655  271.5707  318.0857  225.0557  2
#> s44 -0.14685029  271.2648  317.6353  224.8943  2
#> s45 -0.23988404  271.0156  317.2635  224.7677  2
#> s46 -0.33291778  270.8132  316.9570  224.6694  2
#> s47 -0.42595152  270.6491  316.7044  224.5939  2
#> s48 -0.51898526  270.5166  316.4963  224.5369  2
#> s49 -0.61201900  270.4100  316.3252  224.4948  2
#> s50 -0.70505274  270.3244  316.1845  224.4644  2
#> s51 -0.79808648  270.2562  316.0689  224.4436  2
#> s52 -0.89112022  270.2021  315.9741  224.4301  2
#> s53 -0.98415396  270.1595  315.8965  224.4225  2
#> s54 -1.07718771  270.1262  315.8330  224.4194  2
#> s55 -1.17022145  270.1005  315.7812  224.4199  2
#> s56 -1.26325519  270.0621  315.7153  224.4090  2
#> s57 -1.35628893  270.0149  315.6490  224.3809  2