All functions

Arabidopsis

Arabidopsis clipping/fertilization data

Dyestuff Dyestuff2

Yield of dyestuff by batch

GHrule()

Univariate Gauss-Hermite quadrature rule

GQdk() GQN

Sparse Gaussian / Gauss-Hermite Quadrature grid

InstEval

University Lecture/Instructor Evaluations by Students at ETH

NelderMead()

Class "NelderMead" of Nelder-Mead optimizers and its Generator

Nelder_Mead()

Nelder-Mead Optimization of Parameters, Possibly (Box) Constrained

Pastes

Paste strength by batch and cask

Penicillin

Variation in penicillin testing

VarCorr(<merMod>) as.data.frame(<VarCorr.merMod>) print(<VarCorr.merMod>)

Extract Variance and Correlation Components

VerbAgg

Verbal Aggression item responses

allFit()

Refit a fitted model with all available optimizers

bootMer()

Model-based (Semi-)Parametric Bootstrap for Mixed Models

cake

Breakage Angle of Chocolate Cakes

cbpp

Contagious bovine pleuropneumonia

checkConv()

Extended Convergence Checking

confint(<merMod>) confint(<thpr>)

Compute Confidence Intervals for Parameters of a [ng]lmer Fit

convergence

Assessing Convergence for Fitted Models

devcomp()

Extract the deviance component list

devfun2()

Deviance Function in Terms of Standard Deviations/Correlations

drop1(<merMod>)

Drop all possible single fixed-effect terms from a mixed effect model

dummy()

Dummy variables (experimental)

expandDoubleVerts()

Expand terms with '||' notation into separate '|' terms

factorize()

Attempt to convert grouping variables to factors

findbars()

Determine random-effects expressions from a formula

fixef(<merMod>)

Extract fixed-effects estimates

fortify.merMod() getData(<merMod>)

add information to data based on a fitted model

getME()

Extract or Get Generalized Components from a Fitted Mixed Effects Model

glmFamily-class

Class "glmFamily" - a reference class for family

glmFamily()

Generator object for the glmFamily class

glmer()

Fitting Generalized Linear Mixed-Effects Models

glmer.nb()

Fitting Negative Binomial GLMMs

glmerLaplaceHandle()

Handle for glmerLaplace

golden()

Class "golden" and Generator for Golden Search Optimizer Class

grouseticks

Data on red grouse ticks from Elston et al. 2001

hatvalues(<merMod>)

Diagonal elements of the hat matrix

influence(<merMod>) cooks.distance(<influence.merMod>) dfbeta(<influence.merMod>) dfbetas(<influence.merMod>)

Influence Diagnostics for Mixed-Effects Models

isNested()

Is f1 nested within f2?

isREML() isLMM() isNLMM() isGLMM()

Check characteristics of models

isSingular()

Test Fitted Model for (Near) Singularity

lmList()

Fit List of lm or glm Objects with a Common Model

lmList4-class show,lmList4-method

Class "lmList4" of 'lm' Objects on Common Model

glmResp-class lmerResp-class lmResp-class nlsResp-class

Reference Classes for Response Modules, "(lm|glm|nls|lmer)Resp"

lmResp()

Generator objects for the response classes

lme4 lme4-package

Linear, generalized linear, and nonlinear mixed models

lme4_testlevel()

Detect testing level for lme4 examples and tests

lmer()

Fit Linear Mixed-Effects Models

lmerControl() glmerControl() nlmerControl() .makeCC()

Control of Mixed Model Fitting

anova(<merMod>) as.function(<merMod>) coef(<merMod>) deviance(<merMod>) REMLcrit() extractAIC(<merMod>) family(<merMod>) formula(<merMod>) fitted(<merMod>) logLik(<merMod>) nobs(<merMod>) ngrps(<merMod>) terms(<merMod>) model.frame(<merMod>) model.matrix(<merMod>) print(<merMod>) summary(<merMod>) print(<summary.merMod>) update(<merMod>) weights(<merMod>)

Class "merMod" of Fitted Mixed-Effect Models

merPredD-class

Class "merPredD" - a Dense Predictor Reference Class

merPredD()

Generator object for the merPredD class

mkMerMod()

Create a 'merMod' Object

mkReTrms() mkNewReTrms()

Make Random Effect Terms: Create Z, Lambda, Lind, etc.

mkRespMod()

Create an lmerResp, glmResp or nlsResp instance

mkParsTemplate() mkDataTemplate()

Make templates suitable for guiding mixed model simulations

mkVarCorr()

Make Variance and Correlation Matrices from theta

lFormula() mkLmerDevfun() optimizeLmer() glFormula() mkGlmerDevfun() optimizeGlmer() updateGlmerDevfun()

Modular Functions for Mixed Model Fits

namedList()

Self-naming list function

ngrps()

Number of Levels of a Factor or a "merMod" Model

nlformula()

Manipulate a Nonlinear Model Formula

nlmer()

Fitting Nonlinear Mixed-Effects Models

nloptwrap() nlminbwrap()

Wrappers for additional optimizers

nobars()

Omit terms separated by vertical bars in a formula

plot(<merMod>) qqmath(<merMod>)

Diagnostic Plots for 'merMod' Fits

xyplot(<thpr>) densityplot(<thpr>) splom(<thpr>)

Mixed-Effects Profile Plots (Regular / Density / Pairs)

predict(<merMod>)

Predictions from a model at new data values

profile(<merMod>) as.data.frame(<thpr>) log(<thpr>) logProf() varianceProf()

Profile method for merMod objects

mcmcsamp pvalues

Getting p-values for fitted models

ranef(<merMod>) dotplot(<ranef.mer>) qqmath(<ranef.mer>) as.data.frame(<ranef.mer>)

Extract the modes of the random effects

rePCA()

PCA of random-effects covariance matrix

rePos-class

Class "rePos"

rePos()

Generator object for the rePos (random-effects positions) class

refit()

Refit a (merMod) Model with a Different Response

refitML()

Refit a Model by Maximum Likelihood Criterion

residuals(<merMod>) residuals(<lmResp>) residuals(<glmResp>)

residuals of merMod objects

sigma(<merMod>)

Extract Residual Standard Deviation 'Sigma'

simulate(<formula>)

A simulate Method for formula objects that dispatches based on the Left-Hand Side

simulate(<merMod>) .simulateFun()

Simulate Responses From merMod Object

sleepstudy

Reaction times in a sleep deprivation study

subbars()

"Sub[stitute] Bars"

troubleshooting

Troubleshooting

llikAIC() methTitle() .prt.methTit() .prt.family() .prt.resids() .prt.call() .prt.aictab() .prt.grps() .prt.warn() .prt.VC() formatVC()

Print and Summary Method Utilities for Mixed Effects

mlist2vec() vec2mlist() vec2STlist() sdcor2cov() cov2sdcor() Vv_to_Cv() Sv_to_Cv() Cv_to_Vv() Cv_to_Sv()

Convert between representations of (co-)variance structures

vcov(<merMod>)

Covariance matrix of estimated parameters