Imputes incomplete variable that appears as both main effect and quadratic effect in the complete-data model.
mice.impute.quadratic(y, ry, x, wy = NULL, quad.outcome = NULL, ...)
Vector to be imputed
Logical vector of length length(y)
indicating the
the subset y[ry]
of elements in y
to which the imputation
model is fitted. The ry
generally distinguishes the observed
(TRUE
) and missing values (FALSE
) in y
.
Numeric design matrix with length(y)
rows with predictors for
y
. Matrix x
may have no missing values.
Logical vector of length length(y)
. A TRUE
value
indicates locations in y
for which imputations are created.
The name of the outcome in the quadratic analysis as a
character string. For example, if the substantive model of interest is
y ~ x + xx
, then "y"
would be the quad.outcome
Other named arguments.
Vector with imputed data, same type as y
, and of length
sum(wy)
This function implements the "polynomial combination" method. First, the polynomial combination \(Z = Y \beta_1 + Y^2 \beta_2\) is formed. \(Z\) is imputed by predictive mean matching, followed by a decomposition of the imputed data \(Z\) into components \(Y\) and \(Y^2\). See Van Buuren (2012, pp. 139-141) and Vink et al (2012) for more details. The method ensures that 1) the imputed data for \(Y\) and \(Y^2\) are mutually consistent, and 2) that provides unbiased estimates of the regression weights in a complete-data linear regression that use both \(Y\) and \(Y^2\).
There are two situations to consider. If only the linear term Y
is present in the data, calculate the quadratic term YY
after
imputation. If both the linear term Y
and the the quadratic term
YY
are variables in the data, then first impute Y
by calling
mice.impute.quadratic()
on Y
, and then impute YY
by
passive imputation as meth["YY"] <- "~I(Y^2)"
. See example section
for details. Generally, we would like YY
to be present in the data if
we need to preserve quadratic relations between YY
and any third
variables in the multivariate incomplete data that we might wish to impute.
mice.impute.pmm
Van Buuren, S. (2018).
Flexible Imputation of Missing Data. Second Edition.
Chapman & Hall/CRC. Boca Raton, FL.
Vink, G., van Buuren, S. (2013). Multiple Imputation of Squared Terms. Sociological Methods & Research, 42:598-607.
Other univariate imputation functions:
mice.impute.cart()
,
mice.impute.lasso.logreg()
,
mice.impute.lasso.norm()
,
mice.impute.lasso.select.logreg()
,
mice.impute.lasso.select.norm()
,
mice.impute.lda()
,
mice.impute.logreg()
,
mice.impute.logreg.boot()
,
mice.impute.mean()
,
mice.impute.midastouch()
,
mice.impute.mnar.logreg()
,
mice.impute.mpmm()
,
mice.impute.norm()
,
mice.impute.norm.boot()
,
mice.impute.norm.nob()
,
mice.impute.norm.predict()
,
mice.impute.pmm()
,
mice.impute.polr()
,
mice.impute.polyreg()
,
mice.impute.rf()
,
mice.impute.ri()
# Create Data
B1 <- .5
B2 <- .5
X <- rnorm(1000)
XX <- X^2
e <- rnorm(1000, 0, 1)
Y <- B1 * X + B2 * XX + e
dat <- data.frame(x = X, xx = XX, y = Y)
# Impose 25 percent MCAR Missingness
dat[0 == rbinom(1000, 1, 1 - .25), 1:2] <- NA
# Prepare data for imputation
ini <- mice(dat, maxit = 0)
meth <- c("quadratic", "~I(x^2)", "")
pred <- ini$pred
pred[, "xx"] <- 0
# Impute data
imp <- mice(dat, meth = meth, pred = pred, quad.outcome = "y")
#>
#> iter imp variable
#> 1 1 x xx
#> 1 2 x xx
#> 1 3 x xx
#> 1 4 x xx
#> 1 5 x xx
#> 2 1 x xx
#> 2 2 x xx
#> 2 3 x xx
#> 2 4 x xx
#> 2 5 x xx
#> 3 1 x xx
#> 3 2 x xx
#> 3 3 x xx
#> 3 4 x xx
#> 3 5 x xx
#> 4 1 x xx
#> 4 2 x xx
#> 4 3 x xx
#> 4 4 x xx
#> 4 5 x xx
#> 5 1 x xx
#> 5 2 x xx
#> 5 3 x xx
#> 5 4 x xx
#> 5 5 x xx
# Pool results
pool(with(imp, lm(y ~ x + xx)))
#> Class: mipo m = 5
#> term m estimate ubar b t dfcom df
#> 1 (Intercept) 5 0.0309184 0.0015842066 0.0001587136 0.001774663 997 249.67383
#> 2 x 5 0.5061641 0.0011178679 0.0004890262 0.001704699 997 32.09399
#> 3 xx 5 0.4975252 0.0006127299 0.0001217284 0.000758804 997 95.15452
#> riv lambda fmi
#> 1 0.1202219 0.1073197 0.1143856
#> 2 0.5249559 0.3442434 0.3816148
#> 3 0.2383988 0.1925057 0.2089592
# Plot results
stripplot(imp)
plot(dat$x, dat$xx, col = mdc(1), xlab = "x", ylab = "xx")
cmp <- complete(imp)
points(cmp$x[is.na(dat$x)], cmp$xx[is.na(dat$x)], col = mdc(2))