sparseQR-class.RdsparseQR is the class of sparse, row- and column-pivoted
QR factorizations of \(m \times n\) (\(m \ge n\))
real matrices, having the general form
$$P_1 A P_2 = Q R = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1$$
or (equivalently)
$$A = P_1' Q R P_2' = P_1' \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} P_2' = P_1' Q_1 R_1 P_2'$$
where
\(P_1\) and \(P_2\) are permutation matrices,
\(Q = \prod_{j = 1}^{n} H_j\)
is an \(m \times m\) orthogonal matrix
(\(Q_1\) contains the first \(n\) column vectors)
equal to the product of \(n\) Householder matrices \(H_j\), and
\(R\) is an \(m \times n\) upper trapezoidal matrix
(\(R_1\) contains the first \(n\) row vectors and is
upper triangular).
qrR(qr, complete = FALSE, backPermute = TRUE, row.names = TRUE)an object of class sparseQR,
almost always the result of a call to generic function qr
with sparse x.
a logical indicating if \(R\) should be returned instead of \(R_1\).
a logical indicating if \(R\) or \(R_1\) should be multiplied on the right by \(P_2'\).
a logical indicating if dimnames(qr)[1]
should be propagated unpermuted to the result.
If complete = FALSE, then only the first \(n\) names are kept.
Dim, Dimnamesinherited from virtual class
MatrixFactorization.
betaa numeric vector of length Dim[2],
used to construct Householder matrices; see V below.
Van object of class dgCMatrix
with Dim[2] columns. The number of rows nrow(V)
is at least Dim[1] and at most Dim[1]+Dim[2].
V is lower trapezoidal, and its column vectors generate the
Householder matrices \(H_j\) that compose the orthogonal
\(Q\) factor. Specifically, \(H_j\) is constructed as
diag(Dim[1]) - beta[j] * tcrossprod(V[, j]).
Ran object of class dgCMatrix
with nrow(V) rows and Dim[2] columns.
R is the upper trapezoidal \(R\) factor.
p, q0-based integer vectors of length
nrow(V) and Dim[2], respectively,
specifying the permutations applied to the rows and columns of
the factorized matrix. q of length 0 is valid and
equivalent to the identity permutation, implying no column pivoting.
Using R syntax, the matrix \(P_1 A P_2\)
is precisely A[p+1, q+1]
(A[p+1, ] when q has length 0).
Class QR, directly.
Class MatrixFactorization, by class
QR, distance 2.
Objects can be generated directly by calls of the form
new("sparseQR", ...), but they are more typically obtained
as the value of qr(x) for x inheriting from
sparseMatrix (often dgCMatrix).
determinantsignature(from = "sparseQR", logarithm = "logical"):
computes the determinant of the factorized matrix \(A\)
or its logarithm.
expand1signature(x = "sparseQR"):
see expand1-methods.
expand2signature(x = "sparseQR"):
see expand2-methods.
qr.Qsignature(qr = "sparseQR"):
returns as a dgeMatrix either
\(P_1' Q\) or \(P_1' Q_1\),
depending on optional argument complete. The default
is FALSE, indicating \(P_1' Q_1\).
qr.Rsignature(qr = "sparseQR"):
qrR returns \(R\), \(R_1\),
\(R P2'\), or \(R_1 P2'\),
depending on optional arguments complete and
backPermute. The default in both cases is FALSE,
indicating \(R_1\), for compatibility with base.
The class of the result in that case is
dtCMatrix. In the other three cases,
it is dgCMatrix.
qr.Xsignature(qr = "sparseQR"):
returns \(A\) as a dgeMatrix,
by default. If \(m > n\) and optional argument
ncol is greater than \(n\), then the result
is augmented with \(P_1' Q J\), where
\(J\) is composed of columns \((n+1)\) through
ncol of the \(m \times m\) identity matrix.
qr.coefsignature(qr = "sparseQR", y = .):
returns as a dgeMatrix or vector
the result of multiplying y on the left by
\(P_2 R_1^{-1} Q_1' P_1\).
qr.fittedsignature(qr = "sparseQR", y = .):
returns as a dgeMatrix or vector
the result of multiplying y on the left by
\(P_1' Q_1 Q_1' P_1\).
qr.residsignature(qr = "sparseQR", y = .):
returns as a dgeMatrix or vector
the result of multiplying y on the left by
\(P_1' Q_2 Q_2' P_1\).
qr.qtysignature(qr = "sparseQR", y = .):
returns as a dgeMatrix or vector
the result of multiplying y on the left by
\(Q' P_1\).
qr.qysignature(qr = "sparseQR", y = .):
returns as a dgeMatrix or vector
the result of multiplying y on the left by
\(P_1' Q\).
solvesignature(a = "sparseQR", b = .):
see solve-methods.
The method for qr.Q does not return \(Q\) but rather the
(also orthogonal) product \(P_1' Q\). This behaviour
is algebraically consistent with the base implementation
(see qr), which can be seen by noting that
qr.default in base does not pivot rows, constraining
\(P_1\) to be an identity matrix. It follows that
qr.Q(qr.default(x)) also returns \(P_1' Q\).
Similarly, the methods for qr.qy and qr.qty multiply
on the left by \(P_1' Q\) and \(Q' P_1\)
rather than \(Q\) and \(Q'\).
It is wrong to expect the values of qr.Q (or qr.R,
qr.qy, qr.qty) computed from “equivalent”
sparse and dense factorizations
(say, qr(x) and qr(as(x, "matrix")) for x
of class dgCMatrix) to compare equal.
The underlying factorization algorithms are quite different,
notably as they employ different pivoting strategies,
and in general the factorization is not unique even for fixed
\(P_1\) and \(P_2\).
On the other hand, the values of qr.X, qr.coef,
qr.fitted, and qr.resid are well-defined, and
in those cases the sparse and dense computations should
compare equal (within some tolerance).
The method for qr.R is a simple wrapper around qrR,
but not back-permuting by default and never giving row names.
It did not support backPermute = TRUE until Matrix
1.6-0, hence code needing the back-permuted result should
call qrR if Matrix >= 1.6-0 is not known.
Class dgCMatrix.
Generic function qr from base,
whose default method qr.default “defines”
the S3 class qr of dense QR factorizations.
qr-methods for methods defined in Matrix.
Generic functions expand1 and expand2.
The many auxiliary functions for QR factorizations:
qr.Q, qr.R, qr.X,
qr.coef, qr.fitted, qr.resid,
qr.qty, qr.qy, and qr.solve.
Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718881
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
showClass("sparseQR")
#> Class "sparseQR" [package "Matrix"]
#>
#> Slots:
#>
#> Name: beta V R p q Dim Dimnames
#> Class: numeric dgCMatrix dgCMatrix integer integer integer list
#>
#> Extends:
#> Class "QR", directly
#> Class "MatrixFactorization", by class "QR", distance 2
set.seed(2)
m <- 300L
n <- 60L
A <- rsparsematrix(m, n, 0.05)
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(m)),
paste0("c", seq_len(n)))
(qr.A <- qr(A))
#> QR factorization of Formal class 'sparseQR' [package "Matrix"] with 7 slots
#> ..@ beta : num [1:60] 0.0841 0.0767 0.0993 0.0342 0.1097 ...
#> ..@ V :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
#> .. .. ..@ i : int [1:10202] 0 56 57 58 59 174 181 217 269 272 ...
#> .. .. ..@ p : int [1:61] 0 12 23 32 44 70 80 90 115 128 ...
#> .. .. ..@ Dim : int [1:2] 300 60
#> .. .. ..@ Dimnames:List of 2
#> .. .. .. ..$ : NULL
#> .. .. .. ..$ : NULL
#> .. .. ..@ x : num [1:10202] 3.52 -0.13 1 -0.56 0.83 ...
#> .. .. ..@ factors : list()
#> ..@ R :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
#> .. .. ..@ i : int [1:1595] 0 1 2 3 3 4 5 6 5 6 ...
#> .. .. ..@ p : int [1:61] 0 1 2 3 4 6 7 8 11 12 ...
#> .. .. ..@ Dim : int [1:2] 300 60
#> .. .. ..@ Dimnames:List of 2
#> .. .. .. ..$ : NULL
#> .. .. .. ..$ : NULL
#> .. .. ..@ x : num [1:1595] -3.3731 -3.1545 2.9568 -4.7129 -0.0271 ...
#> .. .. ..@ factors : list()
#> ..@ p : int [1:300] 4 23 24 15 99 42 96 101 21 30 ...
#> ..@ q : int [1:60] 8 23 26 46 47 2 21 50 55 0 ...
#> ..@ Dim : int [1:2] 300 60
#> ..@ Dimnames:List of 2
#> .. ..$ : chr [1:300] "r1" "r2" "r3" "r4" ...
#> .. ..$ : chr [1:60] "c1" "c2" "c3" "c4" ...
str(e.qr.A <- expand2(qr.A, complete = FALSE), max.level = 2L)
#> List of 4
#> $ P1.:Formal class 'pMatrix' [package "Matrix"] with 4 slots
#> $ Q1 :Formal class 'dgeMatrix' [package "Matrix"] with 4 slots
#> $ R1 :Formal class 'dtCMatrix' [package "Matrix"] with 7 slots
#> $ P2.:Formal class 'pMatrix' [package "Matrix"] with 4 slots
str(E.qr.A <- expand2(qr.A, complete = TRUE), max.level = 2L)
#> List of 4
#> $ P1.:Formal class 'pMatrix' [package "Matrix"] with 4 slots
#> $ Q :Formal class 'dgeMatrix' [package "Matrix"] with 4 slots
#> $ R :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
#> $ P2.:Formal class 'pMatrix' [package "Matrix"] with 4 slots
t(sapply(e.qr.A, dim))
#> [,1] [,2]
#> P1. 300 300
#> Q1 300 60
#> R1 60 60
#> P2. 60 60
t(sapply(E.qr.A, dim))
#> [,1] [,2]
#> P1. 300 300
#> Q 300 300
#> R 300 60
#> P2. 60 60
## Horribly inefficient, but instructive :
slowQ <- function(V, beta) {
d <- dim(V)
Q <- diag(d[1L])
if(d[2L] > 0L) {
for(j in d[2L]:1L) {
cat(j, "\n", sep = "")
Q <- Q - (beta[j] * tcrossprod(V[, j])) %*% Q
}
}
Q
}
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ P1' Q R P2' ~ P1' Q1 R1 P2' in floating point
stopifnot(exprs = {
identical(names(e.qr.A), c("P1.", "Q1", "R1", "P2."))
identical(names(E.qr.A), c("P1.", "Q" , "R" , "P2."))
identical(e.qr.A[["P1."]],
new("pMatrix", Dim = c(m, m), Dimnames = c(dn[1L], list(NULL)),
margin = 1L, perm = invertPerm(qr.A@p, 0L, 1L)))
identical(e.qr.A[["P2."]],
new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
margin = 2L, perm = invertPerm(qr.A@q, 0L, 1L)))
identical(e.qr.A[["R1"]], triu(E.qr.A[["R"]][seq_len(n), ]))
identical(e.qr.A[["Q1"]], E.qr.A[["Q"]][, seq_len(n)] )
identical(E.qr.A[["R"]], qr.A@R)
## ae1(E.qr.A[["Q"]], slowQ(qr.A@V, qr.A@beta))
ae1(crossprod(E.qr.A[["Q"]]), diag(m))
ae1(A, with(e.qr.A, P1. %*% Q1 %*% R1 %*% P2.))
ae1(A, with(E.qr.A, P1. %*% Q %*% R %*% P2.))
ae2(A.perm <- A[qr.A@p + 1L, qr.A@q + 1L], with(e.qr.A, Q1 %*% R1))
ae2(A.perm , with(E.qr.A, Q %*% R ))
})
## More identities
b <- rnorm(m)
stopifnot(exprs = {
ae1(qrX <- qr.X (qr.A ), A)
ae2(qrQ <- qr.Q (qr.A ), with(e.qr.A, P1. %*% Q1))
ae2( qr.R (qr.A ), with(e.qr.A, R1))
ae2(qrc <- qr.coef (qr.A, b), with(e.qr.A, solve(R1 %*% P2., t(qrQ)) %*% b))
ae2(qrf <- qr.fitted(qr.A, b), with(e.qr.A, tcrossprod(qrQ) %*% b))
ae2(qrr <- qr.resid (qr.A, b), b - qrf)
ae2(qrq <- qr.qy (qr.A, b), with(E.qr.A, P1. %*% Q %*% b))
ae2(qr.qty(qr.A, qrq), b)
})
#> Error: ae2(qrf <- qr.fitted(qr.A, b), with(e.qr.A, tcrossprod(qrQ) %*% .... is not TRUE
## Sparse and dense computations should agree here
qr.Am <- qr(as(A, "matrix")) # <=> qr.default(A)
stopifnot(exprs = {
ae2(qrX, qr.X (qr.Am ))
ae2(qrc, qr.coef (qr.Am, b))
ae2(qrf, qr.fitted(qr.Am, b))
ae2(qrr, qr.resid (qr.Am, b))
})
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'target' in selecting a method for function 'all.equal': error in evaluating the argument 'obj' in selecting a method for function 'unname': object 'qrr' not found