Spark ML – Isotonic Regression
Source:R/ml_regression_isotonic_regression.R
ml_isotonic_regression.RdCurrently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported.
Usage
ml_isotonic_regression(
x,
formula = NULL,
feature_index = 0,
isotonic = TRUE,
weight_col = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("isotonic_regression_"),
...
)Arguments
- x
A
spark_connection,ml_pipeline, or atbl_spark.- formula
Used when
xis atbl_spark. R formula as a character string or a formula. This is used to transform the input dataframe before fitting, see ft_r_formula for details.- feature_index
Index of the feature if
features_colis a vector column (default: 0), no effect otherwise.- isotonic
Whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false). Default: true
- weight_col
The name of the column to use as weights for the model fit.
- features_col
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by
ft_r_formula.- label_col
Label column name. The column should be a numeric column. Usually this column is output by
ft_r_formula.- prediction_col
Prediction column name.
- uid
A character string used to uniquely identify the ML estimator.
- ...
Optional arguments; see Details.
Value
The object returned depends on the class of x. If it is a
spark_connection, the function returns a ml_estimator object. If
it is a ml_pipeline, it will return a pipeline with the predictor
appended to it. If a tbl_spark, it will return a tbl_spark with
the predictions added to it.
See also
Other ml algorithms:
ml_aft_survival_regression(),
ml_decision_tree_classifier(),
ml_gbt_classifier(),
ml_generalized_linear_regression(),
ml_linear_regression(),
ml_linear_svc(),
ml_logistic_regression(),
ml_multilayer_perceptron_classifier(),
ml_naive_bayes(),
ml_one_vs_rest(),
ml_random_forest_classifier()
Examples
if (FALSE) { # \dontrun{
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
iris_training <- partitions$training
iris_test <- partitions$test
iso_res <- iris_tbl %>%
ml_isotonic_regression(Petal_Length ~ Petal_Width)
pred <- ml_predict(iso_res, iris_test)
pred
} # }