Perform classification using linear support vector machines (SVM). This binary classifier optimizes the Hinge Loss using the OWLQN optimizer. Only supports L2 regularization currently.
Usage
ml_linear_svc(
x,
formula = NULL,
fit_intercept = TRUE,
reg_param = 0,
max_iter = 100,
standardization = TRUE,
weight_col = NULL,
tol = 1e-06,
threshold = 0,
aggregation_depth = 2,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
raw_prediction_col = "rawPrediction",
uid = random_string("linear_svc_"),
...
)Arguments
- x
A
spark_connection,ml_pipeline, or atbl_spark.- formula
Used when
xis atbl_spark. R formula as a character string or a formula. This is used to transform the input dataframe before fitting, see ft_r_formula for details.- fit_intercept
Boolean; should the model be fit with an intercept term?
- reg_param
Regularization parameter (aka lambda)
- max_iter
The maximum number of iterations to use.
- standardization
Whether to standardize the training features before fitting the model.
- weight_col
The name of the column to use as weights for the model fit.
- tol
Param for the convergence tolerance for iterative algorithms.
- threshold
in binary classification prediction, in range [0, 1].
- aggregation_depth
(Spark 2.1.0+) Suggested depth for treeAggregate (>= 2).
- features_col
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by
ft_r_formula.- label_col
Label column name. The column should be a numeric column. Usually this column is output by
ft_r_formula.- prediction_col
Prediction column name.
- raw_prediction_col
Raw prediction (a.k.a. confidence) column name.
- uid
A character string used to uniquely identify the ML estimator.
- ...
Optional arguments; see Details.
Value
The object returned depends on the class of x. If it is a
spark_connection, the function returns a ml_estimator object. If
it is a ml_pipeline, it will return a pipeline with the predictor
appended to it. If a tbl_spark, it will return a tbl_spark with
the predictions added to it.
See also
Other ml algorithms:
ml_aft_survival_regression(),
ml_decision_tree_classifier(),
ml_gbt_classifier(),
ml_generalized_linear_regression(),
ml_isotonic_regression(),
ml_linear_regression(),
ml_logistic_regression(),
ml_multilayer_perceptron_classifier(),
ml_naive_bayes(),
ml_one_vs_rest(),
ml_random_forest_classifier()
Examples
if (FALSE) { # \dontrun{
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%
filter(Species != "setosa") %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
iris_training <- partitions$training
iris_test <- partitions$test
svc_model <- iris_training %>%
ml_linear_svc(Species ~ .)
pred <- ml_predict(svc_model, iris_test)
ml_binary_classification_evaluator(pred)
} # }