Spark ML – Multilayer Perceptron
Source:R/ml_classification_multilayer_perceptron_classifier.R
ml_multilayer_perceptron_classifier.RdClassification model based on the Multilayer Perceptron. Each layer has sigmoid activation function, output layer has softmax.
Usage
ml_multilayer_perceptron_classifier(
x,
formula = NULL,
layers = NULL,
max_iter = 100,
step_size = 0.03,
tol = 1e-06,
block_size = 128,
solver = "l-bfgs",
seed = NULL,
initial_weights = NULL,
thresholds = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
uid = random_string("multilayer_perceptron_classifier_"),
...
)
ml_multilayer_perceptron(
x,
formula = NULL,
layers,
max_iter = 100,
step_size = 0.03,
tol = 1e-06,
block_size = 128,
solver = "l-bfgs",
seed = NULL,
initial_weights = NULL,
features_col = "features",
label_col = "label",
thresholds = NULL,
prediction_col = "prediction",
probability_col = "probability",
raw_prediction_col = "rawPrediction",
uid = random_string("multilayer_perceptron_classifier_"),
response = NULL,
features = NULL,
...
)Arguments
- x
A
spark_connection,ml_pipeline, or atbl_spark.- formula
Used when
xis atbl_spark. R formula as a character string or a formula. This is used to transform the input dataframe before fitting, see ft_r_formula for details.- layers
A numeric vector describing the layers – each element in the vector gives the size of a layer. For example,
c(4, 5, 2)would imply three layers, with an input (feature) layer of size 4, an intermediate layer of size 5, and an output (class) layer of size 2.- max_iter
The maximum number of iterations to use.
- step_size
Step size to be used for each iteration of optimization (> 0).
- tol
Param for the convergence tolerance for iterative algorithms.
- block_size
Block size for stacking input data in matrices to speed up the computation. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data. Recommended size is between 10 and 1000. Default: 128
- solver
The solver algorithm for optimization. Supported options: "gd" (minibatch gradient descent) or "l-bfgs". Default: "l-bfgs"
- seed
A random seed. Set this value if you need your results to be reproducible across repeated calls.
- initial_weights
The initial weights of the model.
- thresholds
Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value
p/tis predicted, wherepis the original probability of that class andtis the class's threshold.- features_col
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by
ft_r_formula.- label_col
Label column name. The column should be a numeric column. Usually this column is output by
ft_r_formula.- prediction_col
Prediction column name.
- probability_col
Column name for predicted class conditional probabilities.
- raw_prediction_col
Raw prediction (a.k.a. confidence) column name.
- uid
A character string used to uniquely identify the ML estimator.
- ...
Optional arguments; see Details.
- response
(Deprecated) The name of the response column (as a length-one character vector.)
- features
(Deprecated) The name of features (terms) to use for the model fit.
Value
The object returned depends on the class of x. If it is a
spark_connection, the function returns a ml_estimator object. If
it is a ml_pipeline, it will return a pipeline with the predictor
appended to it. If a tbl_spark, it will return a tbl_spark with
the predictions added to it.
Details
ml_multilayer_perceptron() is an alias for ml_multilayer_perceptron_classifier() for backwards compatibility.
Examples
if (FALSE) { # \dontrun{
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
iris_training <- partitions$training
iris_test <- partitions$test
mlp_model <- iris_training %>%
ml_multilayer_perceptron_classifier(Species ~ ., layers = c(4, 3, 3))
pred <- ml_predict(mlp_model, iris_test)
ml_multiclass_classification_evaluator(pred)
} # }