R/absval.wres.vs.pred.R
absval.wres.vs.pred.RdThis is a plot of absolute population weighted residuals (|WRES|) vs
population predictions (PRED), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
absval.wres.vs.pred(
object,
ylb = "|WRES|",
idsdir = "up",
type = "p",
smooth = TRUE,
...
)An xpose.data object.
A string giving the label for the y-axis. NULL if none.
Direction for displaying point labels. The default is "up", since we are displaying absolute values.
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available.
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.
Other arguments passed to link{xpose.plot.default}.
Returns an xyplot of |WRES| vs PRED.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default for details.
xpose.plot.default,
xpose.panel.default, xyplot,
xpose.prefs-class, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.cwres(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.dv.vs.idv.sb(),
cat.pc(),
cov.splom(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.cov(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
par_cov_qq,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
ranpar.vs.cov(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.both(),
xpose.VPC.categorical(),
xpose4-package
if (FALSE) { # \dontrun{
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
} # }
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.wres.vs.pred(xpdb)
## A conditioning plot
absval.wres.vs.pred(xpdb, by="HCTZ")
## Custom heading and axis labels
absval.wres.vs.pred(xpdb, main="My conditioning plot",
ylb="|WRES|", xlb="PRED")
## Custom colours and symbols
absval.wres.vs.pred(xpdb, cex=0.6, pch=19, col=1,
smcol="blue", smlty=2)