R/cat.dv.vs.idv.sb.R
cat.dv.vs.idv.sb.RdCategorical observations vs. independent variable using stacked bars.
cat.dv.vs.idv.sb(
object,
dv = xvardef("dv", object),
idv = xvardef("idv", object),
by = NULL,
groups = dv,
force.by.factor = FALSE,
recur = F,
xlb = idv,
ylb = "Proportion",
subset = NULL,
vary.width = T,
level.to.plot = NULL,
refactor.levels = TRUE,
main = xpose.create.title.text(idv, dv, "Proportions of", object, subset = subset, ...),
stack = TRUE,
horizontal = FALSE,
strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)),
scales = list(),
inclZeroWRES = TRUE,
onlyfirst = FALSE,
samp = NULL,
aspect = object@Prefs@Graph.prefs$aspect,
auto.key = "Default",
mirror = FALSE,
mirror.aspect = "fill",
pass.plot.list = FALSE,
x.cex = NULL,
y.cex = NULL,
main.cex = NULL,
mirror.internal = list(strip.missing = missing(strip)),
...
)Xpose data object.
The dependent variable (e.g. "DV" or "CP".)
The independent variable (e.g. "TIME".)
Conditioning variable
How we should group values in each conditional plot.
Should we force the data to be treated as factors?
Not used.
A string giving the label for the x-axis. NULL if none.
A string giving the label for the y-axis. NULL if none.
Subset of data.
Should we vary the width of the bars to match amount of information?
Which levels of the DV to plot.
Should we refactor the levels?
The title of the plot.
Should we stack the bars?
Should the bars be horizontal?
Defining how the strips should appear in the conditioning plots.
Scales argument to xyplot.
Include rows with WRES=0?
Only include first data point for each individual?
Sample to use in mirror plot (a number).
Aspect argument to xyplot.
Make a legend.
Mirror can be FALSE, TRUE, 1 or 3.
Aspect for mirror.
Should the plot list be passed back to user?
Size of x axis label.
Size of Y axis label.
Size of Title.
Internal stuff.
Other arguments passed to function.
Other specific functions:
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.cwres(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.pc(),
cov.splom(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.cov(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
par_cov_qq,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
ranpar.vs.cov(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.both(),
xpose.VPC.categorical(),
xpose4-package
if (FALSE) { # \dontrun{
## read in table files
runno <- 45
xpdb <- xpose.data(runno)
## make some stacked bar plots
cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F)
cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F,by="DOSE")
cat.dv.vs.idv.sb(xpdb,idv="DOSE")
cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F,by="TIME")
cat.dv.vs.idv.sb(xpdb,idv="TIME")
cat.dv.vs.idv.sb(xpdb,idv="CAVH")
cat.dv.vs.idv.sb(xpdb,idv="TIME",by="DOSE",scales=list(x=list(rot=45)))
## make some mirror plots
cat.dv.vs.idv.sb(xpdb,idv="DOSE",mirror=1)
cat.dv.vs.idv.sb(xpdb,idv="CAVH",mirror=1,auto.key=F)
} # }