R/autocorr.cwres.R
autocorr.cwres.RdThis is an autocorrelation plot of conditional weighted residuals, a specific function in Xpose 4. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.
autocorr.cwres(
object,
type = "p",
smooth = TRUE,
ids = F,
main = "Default",
...
)An xpose.data object.
1-character string giving the type of plot desired. The
following values are possible, for details, see plot: '"p"'
for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"',
'"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for
stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"'
does not produce any points or lines.
Logical value indicating whether a smooth should be superimposed.
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
idlab xpose data variable).
The title of the plot. If "Default" then a default title
is plotted. Otherwise the value should be a string like "my title" or
NULL for no plot title.
Other arguments passed to link{xpose.plot.default}.
Returns an autocorrelation plot for conditional weighted population residuals (CWRES).
A wide array of extra options controlling xyplots are available. See
xpose.plot.default for details.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres for details.
xyplot, xpose.prefs-class,
compute.cwres, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.dv.vs.idv.sb(),
cat.pc(),
cov.splom(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.cov(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
par_cov_qq,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
ranpar.vs.cov(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.both(),
xpose.VPC.categorical(),
xpose4-package
if (FALSE) { # \dontrun{
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
} # }
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
autocorr.cwres(xpdb)
## A conditioning plot
autocorr.cwres(xpdb, dilution=TRUE)
## Custom heading and axis labels
autocorr.cwres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED")
## Custom colours and symbols, IDs
autocorr.cwres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)