R/cov.splom.R, R/parm.splom.R, R/ranpar.splom.R
par_cov_splom.RdThese functions plot scatterplot matrices of parameters, random parameters and covariates.
cov.splom(
object,
main = xpose.multiple.plot.title(object = object, plot.text =
"Scatterplot matrix of covariates", ...),
varnames = NULL,
onlyfirst = TRUE,
smooth = TRUE,
lmline = NULL,
...
)
parm.splom(
object,
main = xpose.multiple.plot.title(object = object, plot.text =
"Scatterplot matrix of parameters", ...),
varnames = NULL,
onlyfirst = TRUE,
smooth = TRUE,
lmline = NULL,
...
)
ranpar.splom(
object,
main = xpose.multiple.plot.title(object = object, plot.text =
"Scatterplot matrix of random parameters", ...),
varnames = NULL,
onlyfirst = TRUE,
smooth = TRUE,
lmline = NULL,
...
)An xpose.data object.
A string giving the plot title or NULL if none.
A vector of strings containing labels for the variables in the scatterplot matrix.
Logical value indicating if only the first row per individual is included in the plot.
A NULL value indicates that no superposed line should
be added to the graph. If TRUE then a smooth of the data will be
superimposed.
logical variable specifying whether a linear regression line
should be superimposed over an xyplot. NULL ~
FALSE. (y~x)
Other arguments passed to xpose.plot.histogram.
Delivers a scatterplot matrix.
The parameters or covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$parms, object@Prefs@Xvardef$ranpar or
object@Prefs@Xvardef$covariates, are plotted together as scatterplot
matrices.
A wide array of extra options controlling scatterplot matrices are
available. See xpose.plot.splom for details.
To control the appearance of the labels and names in the scatterplot matrix
plots you can try varname.cex=0.5 and axis.text.cex=0.5 (this
changes the tick labels and the variable names to be half as large as
normal).
cov.splom(): A scatterplot matrix of covariates
parm.splom(): A scatterplot matrix of parameters
ranpar.splom(): A scatterplot matrix of random parameters
xpose.plot.splom, xpose.panel.splom,
splom, xpose.data-class,
xpose.prefs-class
Other specific functions:
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.cwres(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.dv.vs.idv.sb(),
cat.pc(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.cov(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
par_cov_qq,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
ranpar.vs.cov(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.both(),
xpose.VPC.categorical(),
xpose4-package
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## A scatterplot matrix of parameters, grouped by sex
parm.splom(xpdb, groups="SEX")
## A scatterplot matrix of ETAs, grouped by sex
ranpar.splom(xpdb, groups="SEX")
## Covariate scatterplots, with text customization
cov.splom(xpdb, varname.cex=0.4, axis.text.cex=0.4, smooth=NULL, cex=0.4)
#> SEX is categorical and will not be
#> shown in the scatterplot
#> RACE is categorical and will not be
#> shown in the scatterplot
#> SMOK is categorical and will not be
#> shown in the scatterplot
#> HCTZ is categorical and will not be
#> shown in the scatterplot
#> PROP is categorical and will not be
#> shown in the scatterplot
#> CON is categorical and will not be
#> shown in the scatterplot
#> OCC is categorical and will not be
#> shown in the scatterplot