lomax.RdMaximum likelihood estimation of the 2-parameter Lomax distribution.
Parameter link function applied to the
(positive) parameters scale and q.
See Links for more choices.
See CommonVGAMffArguments for information.
For imethod = 2 a good initial value for
iscale is needed to obtain a good estimate for
the other parameter.
The 2-parameter Lomax distribution is the 4-parameter generalized beta II distribution with shape parameters \(a=p=1\). It is probably more widely known as the Pareto (II) distribution. It is also the 3-parameter Singh-Maddala distribution with shape parameter \(a=1\), as well as the beta distribution of the second kind with \(p=1\). More details can be found in Kleiber and Kotz (2003).
The Lomax distribution has density
$$f(y) = q / [b \{1 + y/b\}^{1+q}]$$
for \(b > 0\), \(q > 0\), \(y \geq 0\).
Here, \(b\) is the scale parameter scale,
and q is a shape parameter.
The cumulative distribution function is
$$F(y) = 1 - [1 + (y/b)]^{-q}.$$
The mean is
$$E(Y) = b/(q-1)$$
provided \(q > 1\); these are returned as the fitted values.
This family function handles multiple responses.
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm,
and vgam.
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See the notes in genbetaII.
ldata <- data.frame(y = rlomax(n = 1000, scale = exp(1), exp(2)))
fit <- vglm(y ~ 1, lomax, data = ldata, trace = TRUE)
#> Iteration 1: loglikelihood = -162.21432
#> Iteration 2: loglikelihood = -159.61744
#> Iteration 3: loglikelihood = -159.26851
#> Iteration 4: loglikelihood = -159.24586
#> Iteration 5: loglikelihood = -159.24529
#> Iteration 6: loglikelihood = -159.24528
#> Iteration 7: loglikelihood = -159.24528
coef(fit, matrix = TRUE)
#> loglink(scale) loglink(shape3.q)
#> (Intercept) 1.479203 2.409792
Coef(fit)
#> scale shape3.q
#> 4.389445 11.131641
summary(fit)
#>
#> Call:
#> vglm(formula = y ~ 1, family = lomax, data = ldata, trace = TRUE)
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept):1 1.4792 0.4166 3.551 0.000384 ***
#> (Intercept):2 2.4098 0.3836 6.283 3.33e-10 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Names of linear predictors: loglink(scale), loglink(shape3.q)
#>
#> Log-likelihood: -159.2453 on 1998 degrees of freedom
#>
#> Number of Fisher scoring iterations: 7
#>
#> Warning: Hauck-Donner effect detected in the following estimate(s):
#> '(Intercept):2'
#>