All functions

psych psych-package

A package for personality, psychometric, and psychological research

AUC()

Decision Theory measures of specificity, sensitivity, and d prime

GSBE

Data from the sexism (protest) study of Garcia, Schmitt, Branscome, and Ellemers (2010)

Gleser

Example data from Gleser, Cronbach and Rajaratnam (1965) to show basic principles of generalizability theory.

Gorsuch

Example data set from Gorsuch (1997) for an example factor extension.

Harman Harman.5 Harman.political Harman.8

Five data sets from Harman (1967). 9 cognitive variables from Holzinger and 8 emotional variables from Burt

ICC()

Intraclass Correlations (ICC1, ICC2, ICC3 from Shrout and Fleiss)

iclust() ICLUST()

iclust: Item Cluster Analysis – Hierarchical cluster analysis using psychometric principles

ICLUST.cluster()

Function to form hierarchical cluster analysis of items

ICLUST.graph()

create control code for ICLUST graphical output

ICLUST.rgraph()

Draw an ICLUST graph using the Rgraphviz package

ICLUST.sort()

Sort items by absolute size of cluster loadings

KMO()

Find the Kaiser, Meyer, Olkin Measure of Sampling Adequacy

Pinv()

Compute the Moore-Penrose Pseudo Inverse of a matrix

faRotate() bifactor() biquartimin() TargetQ() TargetT() Promax() Procrustes() target.rot() varimin() vgQ.bimin() vgQ.targetQ() vgQ.varimin() equamax()

Perform Procustes,bifactor, promax or targeted rotations and return the inter factor angles.

RMSEA()

Root Mean Squared Error of Approximation from chisq, df, and n

RV()

Three measures of the correlations between sets of variables

SD()

Find the Standard deviation for a vector, matrix, or data.frame - do not return error if there are no cases

Schmid

12 variables created by Schmid and Leiman to show the Schmid-Leiman Transformation

Tucker

9 Cognitive variables discussed by Tucker and Lewis (1973)

vss() VSS() nfactors() vssSelect() eigenCi()

Apply the Very Simple Structure, MAP, and other criteria to determine the appropriate number of factors.

VSS.parallel()

Compare real and random VSS solutions

VSS.plot()

Plot VSS fits

scree() VSS.scree()

Plot the successive eigen values for a scree test

YuleBonett() YuleCor() Yule() Yule.inv() Yule2phi() Yule2tetra() Yule2poly()

From a two by two table, find the Yule coefficients of association, convert to phi, or tetrachoric, recreate table the table to create the Yule coefficient.

alpha() alpha.ci() alpha2r()

Find two estimates of reliability: Cronbach's alpha and Guttman's Lambda 6.

anova(<psych>)

Model comparison for regression, mediation, cluster and factor analysis

bassAckward() bassAckward.diagram()

The Bass-Ackward factoring algorithm discussed by Goldberg

bestScales() bestItems()

A bootstrap aggregation function for choosing most predictive unit weighted items

bfi bfi.dictionary

25 Personality items representing 5 factors

bi.bars()

Draw pairs of bargraphs based on two groups

Thurstone Thurstone.33 Thurstone.33G Thurstone.9 Holzinger Holzinger.9 Bechtoldt Bechtoldt.1 Bechtoldt.2 Reise

Seven data sets showing a bifactor solution.

bigCor()

Find large correlation matrices by stitching together smaller ones found more rapidly

biplot(<psych>)

Draw biplots of factor or component scores by factor or component loadings

block.random()

Create a block randomized structure for n independent variables

bock

Bock and Liberman (1970) data set of 1000 observations of the LSAT

cattell

12 cognitive variables from Cattell (1963)

circ.tests()

Apply four tests of circumplex versus simple structure

scoreOverlap() scoreBy() cluster.cor()

Find correlations of composite variables (corrected for overlap) from a larger matrix.

cluster.fit()

cluster Fit: fit of the cluster model to a correlation matrix

cluster.loadings()

Find item by cluster correlations, corrected for overlap and reliability

cluster.plot() fa.plot() factor.plot()

Plot factor/cluster loadings and assign items to clusters by their highest loading.

cluster2keys()

Convert a cluster vector (from e.g., kmeans) to a keys matrix suitable for scoring item clusters.

cohen.d() d.robust() cohen.d.ci() d.ci() cohen.d.by() d2r() r2d() d2t() t2d() m2t() m2d() d2OVL() d2OVL2() d2CL() d2U3() cd.validity()

Find Cohen d and confidence intervals

comorbidity()

Convert base rates of two diagnoses and their comorbidity into phi, Yule, and tetrachorics

congruence() cohen.profile() distance()

Matrix and profile congruences and distances

corCi() cor.ci()

Bootstrapped and normal confidence intervals for raw and composite correlations

corPlot() corPlotUpperLowerCi() cor.plot() cor.plot.upperLowerCi()

Create an image plot for a correlation or factor matrix

cor.smooth() cor.smoother()

Smooth a non-positive definite correlation matrix to make it positive definite

cor.wt()

The sample size weighted correlation may be used in correlating aggregated data

cor2dist()

Convert correlations to distances (necessary to do multidimensional scaling of correlation data)

corFiml()

Find a Full Information Maximum Likelihood (FIML) correlation or covariance matrix from a data matrix with missing data

corTest() corr.test() corr.p()

Find the correlations, sample sizes, and probability values between elements of a matrix or data.frame.

correct.cor()

Find dis-attenuated correlations given correlations and reliabilities

cortest.bartlett()

Bartlett's test that a correlation matrix is an identity matrix

cortest() cortest.normal() cortest.jennrich() cortest.mat()

Chi square tests of whether a single matrix is an identity matrix, or a pair of matrices are equal.

cosinor() cosinor.plot() cosinor.period() circadian.phase() circadian.mean() circadian.sd() circadian.stats() circadian.F() circadian.reliability() circular.mean() circadian.cor() circular.cor() circadian.linear.cor()

Functions for analysis of circadian or diurnal data

pairwiseCount() pairwiseDescribe() pairwiseZero() pairwiseImpute() pairwiseReport() pairwiseSample() pairwiseCountBig() pairwisePlot() count.pairwise()

Count number of pairwise cases for a data set with missing (NA) data and impute values.

cta() cta.15()

Simulate the C(ues) T(endency) A(ction) model of motivation

violin() violinBy() densityBy()

Create a 'violin plot' or density plot of the distribution of a set of variables

fa.poly() factor.minres() factor.wls()

Deprecated Exploratory Factor analysis functions. Please use fa

describe() describeData() describeFast()

Basic descriptive statistics useful for psychometrics

describeBy() describe.by()

Basic summary statistics by group

diagram() dia.rect() dia.ellipse() dia.triangle() dia.ellipse1() dia.shape() dia.arrow() dia.curve() dia.curved.arrow() dia.self() dia.cone() multi.self() multi.arrow() multi.curved.arrow() multi.rect()

Helper functions for drawing path model diagrams

draw.tetra() draw.cor()

Draw a correlation ellipse and two normal curves to demonstrate tetrachoric correlation

dummy.code()

Create dummy coded variables

Dwyer

8 cognitive variables used by Dwyer for an example.

eigen.loadings()

Convert eigen vectors and eigen values to the more normal (for psychologists) component loadings

ellipses() minkowski()

Plot data and 1 and 2 sigma correlation ellipses

error.bars() error.bars.tab()

Plot means and confidence intervals

error.bars.by()

Plot means and confidence intervals for multiple groups

errorCircles()

Two way plots of means, error bars, and sample sizes

error.crosses()

Plot x and y error bars

error.dots()

Show a dot.chart with error bars for different groups or variables

esem() esemDiagram() esem.diagram() cancorDiagram() interbattery()

Perform and Exploratory Structural Equation Model (ESEM) by using factor extension techniques

fa() fac() fa.pooled() fa.sapa()

Exploratory Factor analysis using MinRes (minimum residual) as well as EFA by Principal Axis, Weighted Least Squares or Maximum Likelihood

fa.diagram() het.diagram() extension.diagram() fa.graph() fa.rgraph()

Graph factor loading matrices

fa.extension() fa.extend() faRegression() faReg()

Apply Dwyer's factor extension to find factor loadings for extended variables

lookup() lookupItems() fa.lookup() item.lookup() itemSort() keys.lookup() lookupFromKeys() lmCorLookup()

A set of functions for factorial and empirical scale construction

fa.parallel() paSelect() fa.parallel.poly() plot(<poly.parallel>)

Scree plots of data or correlation matrix compared to random “parallel" matrices

fa.random()

A first approximation to Random Effects Exploratory Factor Analysis

fa.sort() fa.organize()

Sort factor analysis or principal components analysis loadings

faCor()

Correlations between two factor analysis solutions

fa.multi() fa.multi.diagram()

Multi level (hierarchical) factor analysis

faRotations()

Multiple rotations of factor loadings to find local minima

factor.congruence() fa.congruence()

Coefficient of factor congruence

factor.fit()

How well does the factor model fit a correlation matrix. Part of the VSS package

factor.model()

Find R = F F' + U2 is the basic factor model

factor.residuals()

R* = R- F F'

factor.rotate()

“Hand" rotate a factor loading matrix

factor.scores()

Various ways to estimate factor scores for the factor analysis model

fa.stats() factor.stats()

Find various goodness of fit statistics for factor analysis and principal components

factor2cluster()

Extract cluster definitions from factor loadings

fisherz() fisherz2r() r.con() r2t() t2r() g2r() chi2r() r2chi() r2c() cor2cov() r2p()

Transformations of r, d, and t including Fisher r to z and z to r and confidence intervals

fparse()

Parse and extend formula input from a model and return the DV(s), IV(s), and associated terms.

geometric.mean()

Find the geometric mean of a vector or columns of a data.frame.

glb.algebraic()

Find the greatest lower bound to reliability.

splitHalf() guttman() tenberge() glb() glb.fa()

Alternative estimates of test reliabiity

harmonic.mean()

Find the harmonic mean of a vector, matrix, or columns of a data.frame

headTail() headtail() topBottom() quickView()

Combine calls to head and tail

iclust.diagram()

Draw an ICLUST hierarchical cluster structure diagram

interp.median() interp.quantiles() interp.quartiles() interp.boxplot() interp.values() interp.qplot.by()

Find the interpolated sample median, quartiles, or specific quantiles for a vector, matrix, or data frame

irt.fa() irt.select() fa2irt()

Item Response Analysis by Exploratory Factor Analysis of tetrachoric/polychoric correlations

irt.item.diff.rasch() irt.discrim()

Simple function to estimate item difficulties using IRT concepts

irt.person.rasch() irt.0p() irt.1p() irt.2p()

Item Response Theory estimate of theta (ability) using a Rasch (like) model

irt.responses()

Plot probability of multiple choice responses as a function of a latent trait

kaiser()

Apply the Kaiser normalization when rotating factors

cohen.kappa() wkappa()

Find Cohen's kappa and weighted kappa coefficients for correlation of two raters

lmCor() setCor() lmDiagram() lmCor.diagram() set.cor() mat.regress() matReg() crossValidation() crossValidationBoot() matPlot()

Multiple Regression, Canonical and Set Correlation from matrix or raw input

logistic() logit() logistic.grm()

Logistic transform from x to p and logit transform from p to x

lowerUpper()

Combine two square matrices to have a lower off diagonal for one, upper off diagonal for the other

make.keys() keys2list() selectFromKeys() makePositiveKeys()

Create a keys matrix for use by score.items or cluster.cor

manhattan()

"Manhattan" plots of correlations with a set of criteria.

mat.sort() matSort()

Sort the elements of a correlation matrix to reflect factor loadings

`%+%`

A function to add two vectors or matrices

mediate() mediate.diagram() moderate.diagram()

Estimate and display direct and indirect effects of mediators and moderator in path models

psych.misc() lowerCor() cor2() lowerMat() matMult() tableF() reflect() progressBar() shannon() test.all() levels2numeric() char2numeric() nchar2numeric() isCorrelation() isCovariance() fromTo() cs() acs() SAPAfy()

Miscellaneous helper functions for the psych package

mixedCor() mixed.cor()

Find correlations for mixtures of continuous, polytomous, and dichotomous variables

mssd() rmssd() autoR()

Find von Neuman's Mean Square of Successive Differences

multi.hist() histBy()

Multiple histograms with density and normal fits on one page

mlr() mlArrange() mlPlot() multilevel.reliability()

Find and plot various reliability/gneralizability coefficients for multilevel data

omega() omegaSem() omegah() omegaFromSem() omegaDirect() directSl()

Calculate McDonald's omega estimates of general and total factor saturation

omega.diagram() omega.graph()

Graph hierarchical factor structures

outlier()

Find and graph Mahalanobis squared distances to detect outliers

p.rep() p.rep.f() p.rep.r() p.rep.t()

Find the probability of replication for an F, t, or r and estimate effect size

paired.r()

Test the difference between (un)paired correlations

pairs(<panels>)

SPLOM, histograms and correlations for a data matrix

parcels() keysort()

Find miniscales (parcels) of size 2 or 3 from a set of items

partial.r()

Find the partial correlations for a set (x) of variables with set (y) removed.

phi()

Find the phi coefficient of correlation between two dichotomous variables

phi.demo()

A simple demonstration of the Pearson, phi, and polychoric corelation

phi2tetra() phi2poly()

Convert a phi coefficient to a tetrachoric correlation

plot(<psych>) plot(<irt>) plot(<poly>) plot(<residuals>)

Plotting functions for the psych package of class “psych"

polar()

Convert Cartesian factor loadings into polar coordinates

Yule2poly.matrix() phi2poly.matrix() Yule2phi.matrix()

Phi or Yule coefficient matrix to polychoric coefficient matrix

predict(<psych>)

Prediction function for factor analysis, principal components (pca), bestScales

predicted.validity() item.validity() validityItem()

Find the predicted validities of a set of scales based on item statistics

principal()

Principal components analysis (PCA)

print(<psych>) summary(<psych>)

Print and summary functions for the psych class

r.test()

Tests of significance for correlations

rangeCorrection()

Correct correlations for restriction of range. (Thorndike Case 2)

reliability() plot(<reliability>)

Reports 7 different estimates of scale reliabity including alpha, omega, split half

rescale()

Function to convert scores to “conventional " metrics

residuals(<psych>) resid(<psych>)

Extract residuals from various psych objects

reverse.code()

Reverse the coding of selected items prior to scale analysis

sat.act

3 Measures of ability: SATV, SATQ, ACT

scaling.fits()

Test the adequacy of simple choice, logistic, or Thurstonian scaling.

scatterHist() scatter.hist()

Draw a scatter plot with associated X and Y histograms, densities and correlation

schmid()

Apply the Schmid Leiman transformation to a correlation matrix

score.alpha()

Score scales and find Cronbach's alpha as well as associated statistics

scoreIrt() scoreIrt.1pl() scoreIrt.2pl() score.irt() score.irt.2() score.irt.poly() irt.stats.like() make.irt.stats() irt.tau() irt.se()

Find Item Response Theory (IRT) based scores for dichotomous or polytomous items

scoreItems() score.items() scoreFast() scoreVeryFast() response.frequencies() responseFrequency() removeMissing()

Score item composite scales and find Cronbach's alpha, Guttman lambda 6 and item whole correlations

score.multiple.choice()

Score multiple choice items and provide basic test statistics

scoreWtd()

Score items using regression or correlation based weights

scrub()

A utility for basic data cleaning and recoding. Changes values outside of minimum and maximum limits to NA.

sim() sim.simplex() sim.minor()

Functions to simulate psychological/psychometric data.

sim.VSS()

create VSS like data

sim.anova()

Simulate a 3 way balanced ANOVA or linear model, with or without repeated measures.

sim.congeneric()

Simulate a congeneric data set with or without minor factors

sim.hierarchical() sim.bonds() make.hierarchical()

Create a population or sample correlation matrix, perhaps with hierarchical structure.

sim.rasch() sim.irt() sim.npl() sim.npn() sim.poly() sim.poly.npn() sim.poly.npl() sim.poly.ideal() sim.poly.ideal.npn() sim.poly.ideal.npl() sim.poly.mat()

Functions to simulate psychological/psychometric data.

sim.item() sim.circ() sim.dichot() item.dichot() sim.spherical() con2cat()

Generate simulated data structures for circumplex, spherical, or simple structure

sim.multi() sim.multilevel()

Simulate multilevel data with specified within group and between group correlations

sim.omega() sim.parallel()

Further functions to simulate psychological/psychometric data.

sim.structure() sim.structural() simCor() sim.correlation()

Create correlation matrices or data matrices with a particular measurement and structural model

simulation.circ() circ.sim.plot()

Simulations of circumplex and simple structure

skew() kurtosi() mardia()

Calculate univariate or multivariate (Mardia's test) skew and kurtosis for a vector, matrix, or data.frame

small.msq

A small example data set taken from a larger data set

smc()

Find the Squared Multiple Correlation (SMC) of each variable with the remaining variables in a matrix

spider() radar()

Make "radar" or "spider" plots.

statsBy() statsBy.boot() statsBy.boot.summary() faBy()

Find statistics (including correlations) within and between groups for basic multilevel analyses

structure.diagram() structure.graph() structure.sem() lavaan.diagram() sem.diagram() sem.graph()

Draw a structural equation model specified by two measurement models and a structural model

structure.list() phi.list()

Create factor model matrices from an input list

superMatrix() superCor() super.matrix()

Form a super matrix from two sub matrices.

table2matrix() table2df()

Convert a table with counts to a matrix or data.frame representing those counts.

Tal.Or

Data set testing causal direction in presumed media influence

test.irt()

A simple demonstration (and test) of various IRT scoring algorthims.

test.psych()

Testing of functions in the psych package

testRetest()

Find various test-retest statistics, including test, person and item reliability

tetrachoric() polychoric() biserial() polyserial() polydi() poly.mat()

Tetrachoric, polychoric, biserial and polyserial correlations from various types of input

thurstone()

Thurstone Case V scaling

tr()

Find the trace of a square matrix

unidim()

Several indices of the unidimensionality of a set of variables.

winsor() winsor.mean() winsor.means() winsor.sd() winsor.var()

Find the Winsorized scores, means, sds or variances for a vector, matrix, or data.frame

withinBetween

An example of the distinction between within group and between group correlations